Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{10}{x+3}+\frac{x+63}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{10\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x+63}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+3\right). Multiply \frac{10}{x+3} times \frac{x-3}{x-3}.
\frac{10\left(x-3\right)+x+63}{\left(x-3\right)\left(x+3\right)}
Since \frac{10\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x+63}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{10x-30+x+63}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 10\left(x-3\right)+x+63.
\frac{11x+33}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 10x-30+x+63.
\frac{11\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{11x+33}{\left(x-3\right)\left(x+3\right)}.
\frac{11}{x-3}
Cancel out x+3 in both numerator and denominator.
\frac{10}{x+3}+\frac{x+63}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{10\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x+63}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+3\right). Multiply \frac{10}{x+3} times \frac{x-3}{x-3}.
\frac{10\left(x-3\right)+x+63}{\left(x-3\right)\left(x+3\right)}
Since \frac{10\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x+63}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{10x-30+x+63}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 10\left(x-3\right)+x+63.
\frac{11x+33}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 10x-30+x+63.
\frac{11\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{11x+33}{\left(x-3\right)\left(x+3\right)}.
\frac{11}{x-3}
Cancel out x+3 in both numerator and denominator.