Solve for x
x = -\frac{13}{5} = -2\frac{3}{5} = -2.6
Graph
Share
Copied to clipboard
\left(4x+8\right)\times 10=\left(x+1\right)\times 15
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x+1\right)\left(x+2\right), the least common multiple of x+1,4\left(x+2\right).
40x+80=\left(x+1\right)\times 15
Use the distributive property to multiply 4x+8 by 10.
40x+80=15x+15
Use the distributive property to multiply x+1 by 15.
40x+80-15x=15
Subtract 15x from both sides.
25x+80=15
Combine 40x and -15x to get 25x.
25x=15-80
Subtract 80 from both sides.
25x=-65
Subtract 80 from 15 to get -65.
x=\frac{-65}{25}
Divide both sides by 25.
x=-\frac{13}{5}
Reduce the fraction \frac{-65}{25} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}