Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{10-\left(c+2\right)}{c-2}-\frac{c+4}{c-1}
Since \frac{10}{c-2} and \frac{c+2}{c-2} have the same denominator, subtract them by subtracting their numerators.
\frac{10-c-2}{c-2}-\frac{c+4}{c-1}
Do the multiplications in 10-\left(c+2\right).
\frac{8-c}{c-2}-\frac{c+4}{c-1}
Combine like terms in 10-c-2.
\frac{\left(8-c\right)\left(c-1\right)}{\left(c-2\right)\left(c-1\right)}-\frac{\left(c+4\right)\left(c-2\right)}{\left(c-2\right)\left(c-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c-2 and c-1 is \left(c-2\right)\left(c-1\right). Multiply \frac{8-c}{c-2} times \frac{c-1}{c-1}. Multiply \frac{c+4}{c-1} times \frac{c-2}{c-2}.
\frac{\left(8-c\right)\left(c-1\right)-\left(c+4\right)\left(c-2\right)}{\left(c-2\right)\left(c-1\right)}
Since \frac{\left(8-c\right)\left(c-1\right)}{\left(c-2\right)\left(c-1\right)} and \frac{\left(c+4\right)\left(c-2\right)}{\left(c-2\right)\left(c-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8c-8-c^{2}+c-c^{2}+2c-4c+8}{\left(c-2\right)\left(c-1\right)}
Do the multiplications in \left(8-c\right)\left(c-1\right)-\left(c+4\right)\left(c-2\right).
\frac{7c-2c^{2}}{\left(c-2\right)\left(c-1\right)}
Combine like terms in 8c-8-c^{2}+c-c^{2}+2c-4c+8.
\frac{7c-2c^{2}}{c^{2}-3c+2}
Expand \left(c-2\right)\left(c-1\right).
\frac{10-\left(c+2\right)}{c-2}-\frac{c+4}{c-1}
Since \frac{10}{c-2} and \frac{c+2}{c-2} have the same denominator, subtract them by subtracting their numerators.
\frac{10-c-2}{c-2}-\frac{c+4}{c-1}
Do the multiplications in 10-\left(c+2\right).
\frac{8-c}{c-2}-\frac{c+4}{c-1}
Combine like terms in 10-c-2.
\frac{\left(8-c\right)\left(c-1\right)}{\left(c-2\right)\left(c-1\right)}-\frac{\left(c+4\right)\left(c-2\right)}{\left(c-2\right)\left(c-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c-2 and c-1 is \left(c-2\right)\left(c-1\right). Multiply \frac{8-c}{c-2} times \frac{c-1}{c-1}. Multiply \frac{c+4}{c-1} times \frac{c-2}{c-2}.
\frac{\left(8-c\right)\left(c-1\right)-\left(c+4\right)\left(c-2\right)}{\left(c-2\right)\left(c-1\right)}
Since \frac{\left(8-c\right)\left(c-1\right)}{\left(c-2\right)\left(c-1\right)} and \frac{\left(c+4\right)\left(c-2\right)}{\left(c-2\right)\left(c-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8c-8-c^{2}+c-c^{2}+2c-4c+8}{\left(c-2\right)\left(c-1\right)}
Do the multiplications in \left(8-c\right)\left(c-1\right)-\left(c+4\right)\left(c-2\right).
\frac{7c-2c^{2}}{\left(c-2\right)\left(c-1\right)}
Combine like terms in 8c-8-c^{2}+c-c^{2}+2c-4c+8.
\frac{7c-2c^{2}}{c^{2}-3c+2}
Expand \left(c-2\right)\left(c-1\right).