Solve for a
a=\frac{3x}{x+5}
x\neq 0\text{ and }x\neq -5
Solve for x
x=-\frac{5a}{a-3}
a\neq 0\text{ and }a\neq 3
Graph
Share
Copied to clipboard
3x\times 10-a\times 50=ax\left(3\times 3+1\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3ax, the least common multiple of a,3x,3.
30x-a\times 50=ax\left(3\times 3+1\right)
Multiply 3 and 10 to get 30.
30x-a\times 50=ax\left(9+1\right)
Multiply 3 and 3 to get 9.
30x-a\times 50=ax\times 10
Add 9 and 1 to get 10.
30x-a\times 50-ax\times 10=0
Subtract ax\times 10 from both sides.
30x-50a-ax\times 10=0
Multiply -1 and 50 to get -50.
30x-50a-10ax=0
Multiply -1 and 10 to get -10.
-50a-10ax=-30x
Subtract 30x from both sides. Anything subtracted from zero gives its negation.
\left(-50-10x\right)a=-30x
Combine all terms containing a.
\left(-10x-50\right)a=-30x
The equation is in standard form.
\frac{\left(-10x-50\right)a}{-10x-50}=-\frac{30x}{-10x-50}
Divide both sides by -50-10x.
a=-\frac{30x}{-10x-50}
Dividing by -50-10x undoes the multiplication by -50-10x.
a=\frac{3x}{x+5}
Divide -30x by -50-10x.
a=\frac{3x}{x+5}\text{, }a\neq 0
Variable a cannot be equal to 0.
3x\times 10-a\times 50=ax\left(3\times 3+1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3ax, the least common multiple of a,3x,3.
30x-a\times 50=ax\left(3\times 3+1\right)
Multiply 3 and 10 to get 30.
30x-a\times 50=ax\left(9+1\right)
Multiply 3 and 3 to get 9.
30x-a\times 50=ax\times 10
Add 9 and 1 to get 10.
30x-a\times 50-ax\times 10=0
Subtract ax\times 10 from both sides.
30x-50a-ax\times 10=0
Multiply -1 and 50 to get -50.
30x-50a-10ax=0
Multiply -1 and 10 to get -10.
30x-10ax=50a
Add 50a to both sides. Anything plus zero gives itself.
\left(30-10a\right)x=50a
Combine all terms containing x.
\frac{\left(30-10a\right)x}{30-10a}=\frac{50a}{30-10a}
Divide both sides by 30-10a.
x=\frac{50a}{30-10a}
Dividing by 30-10a undoes the multiplication by 30-10a.
x=\frac{5a}{3-a}
Divide 50a by 30-10a.
x=\frac{5a}{3-a}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}