Solve for x
x = \frac{27}{25} = 1\frac{2}{25} = 1.08
x=0
Graph
Share
Copied to clipboard
\frac{10}{9}x^{2}-\frac{6}{5}x=0
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
x\left(\frac{10}{9}x-\frac{6}{5}\right)=0
Factor out x.
x=0 x=\frac{27}{25}
To find equation solutions, solve x=0 and \frac{10x}{9}-\frac{6}{5}=0.
\frac{10}{9}x^{2}-\frac{6}{5}x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\left(-\frac{6}{5}\right)^{2}}}{2\times \frac{10}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{10}{9} for a, -\frac{6}{5} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{6}{5}\right)±\frac{6}{5}}{2\times \frac{10}{9}}
Take the square root of \left(-\frac{6}{5}\right)^{2}.
x=\frac{\frac{6}{5}±\frac{6}{5}}{2\times \frac{10}{9}}
The opposite of -\frac{6}{5} is \frac{6}{5}.
x=\frac{\frac{6}{5}±\frac{6}{5}}{\frac{20}{9}}
Multiply 2 times \frac{10}{9}.
x=\frac{\frac{12}{5}}{\frac{20}{9}}
Now solve the equation x=\frac{\frac{6}{5}±\frac{6}{5}}{\frac{20}{9}} when ± is plus. Add \frac{6}{5} to \frac{6}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{27}{25}
Divide \frac{12}{5} by \frac{20}{9} by multiplying \frac{12}{5} by the reciprocal of \frac{20}{9}.
x=\frac{0}{\frac{20}{9}}
Now solve the equation x=\frac{\frac{6}{5}±\frac{6}{5}}{\frac{20}{9}} when ± is minus. Subtract \frac{6}{5} from \frac{6}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by \frac{20}{9} by multiplying 0 by the reciprocal of \frac{20}{9}.
x=\frac{27}{25} x=0
The equation is now solved.
\frac{10}{9}x^{2}-\frac{6}{5}x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{10}{9}x^{2}-\frac{6}{5}x}{\frac{10}{9}}=\frac{0}{\frac{10}{9}}
Divide both sides of the equation by \frac{10}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{6}{5}}{\frac{10}{9}}\right)x=\frac{0}{\frac{10}{9}}
Dividing by \frac{10}{9} undoes the multiplication by \frac{10}{9}.
x^{2}-\frac{27}{25}x=\frac{0}{\frac{10}{9}}
Divide -\frac{6}{5} by \frac{10}{9} by multiplying -\frac{6}{5} by the reciprocal of \frac{10}{9}.
x^{2}-\frac{27}{25}x=0
Divide 0 by \frac{10}{9} by multiplying 0 by the reciprocal of \frac{10}{9}.
x^{2}-\frac{27}{25}x+\left(-\frac{27}{50}\right)^{2}=\left(-\frac{27}{50}\right)^{2}
Divide -\frac{27}{25}, the coefficient of the x term, by 2 to get -\frac{27}{50}. Then add the square of -\frac{27}{50} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{27}{25}x+\frac{729}{2500}=\frac{729}{2500}
Square -\frac{27}{50} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{27}{50}\right)^{2}=\frac{729}{2500}
Factor x^{2}-\frac{27}{25}x+\frac{729}{2500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{50}\right)^{2}}=\sqrt{\frac{729}{2500}}
Take the square root of both sides of the equation.
x-\frac{27}{50}=\frac{27}{50} x-\frac{27}{50}=-\frac{27}{50}
Simplify.
x=\frac{27}{25} x=0
Add \frac{27}{50} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}