Solve for x
x=\frac{2\sqrt{595}}{7}+10\approx 16.969320524
x=-\frac{2\sqrt{595}}{7}+10\approx 3.030679476
Graph
Share
Copied to clipboard
\frac{10\times 4}{7}\times 9=\left(20-x\right)x
Express \frac{10}{7}\times 4 as a single fraction.
\frac{40}{7}\times 9=\left(20-x\right)x
Multiply 10 and 4 to get 40.
\frac{40\times 9}{7}=\left(20-x\right)x
Express \frac{40}{7}\times 9 as a single fraction.
\frac{360}{7}=\left(20-x\right)x
Multiply 40 and 9 to get 360.
\frac{360}{7}=20x-x^{2}
Use the distributive property to multiply 20-x by x.
20x-x^{2}=\frac{360}{7}
Swap sides so that all variable terms are on the left hand side.
20x-x^{2}-\frac{360}{7}=0
Subtract \frac{360}{7} from both sides.
-x^{2}+20x-\frac{360}{7}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-1\right)\left(-\frac{360}{7}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 20 for b, and -\frac{360}{7} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-1\right)\left(-\frac{360}{7}\right)}}{2\left(-1\right)}
Square 20.
x=\frac{-20±\sqrt{400+4\left(-\frac{360}{7}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-20±\sqrt{400-\frac{1440}{7}}}{2\left(-1\right)}
Multiply 4 times -\frac{360}{7}.
x=\frac{-20±\sqrt{\frac{1360}{7}}}{2\left(-1\right)}
Add 400 to -\frac{1440}{7}.
x=\frac{-20±\frac{4\sqrt{595}}{7}}{2\left(-1\right)}
Take the square root of \frac{1360}{7}.
x=\frac{-20±\frac{4\sqrt{595}}{7}}{-2}
Multiply 2 times -1.
x=\frac{\frac{4\sqrt{595}}{7}-20}{-2}
Now solve the equation x=\frac{-20±\frac{4\sqrt{595}}{7}}{-2} when ± is plus. Add -20 to \frac{4\sqrt{595}}{7}.
x=-\frac{2\sqrt{595}}{7}+10
Divide -20+\frac{4\sqrt{595}}{7} by -2.
x=\frac{-\frac{4\sqrt{595}}{7}-20}{-2}
Now solve the equation x=\frac{-20±\frac{4\sqrt{595}}{7}}{-2} when ± is minus. Subtract \frac{4\sqrt{595}}{7} from -20.
x=\frac{2\sqrt{595}}{7}+10
Divide -20-\frac{4\sqrt{595}}{7} by -2.
x=-\frac{2\sqrt{595}}{7}+10 x=\frac{2\sqrt{595}}{7}+10
The equation is now solved.
\frac{10\times 4}{7}\times 9=\left(20-x\right)x
Express \frac{10}{7}\times 4 as a single fraction.
\frac{40}{7}\times 9=\left(20-x\right)x
Multiply 10 and 4 to get 40.
\frac{40\times 9}{7}=\left(20-x\right)x
Express \frac{40}{7}\times 9 as a single fraction.
\frac{360}{7}=\left(20-x\right)x
Multiply 40 and 9 to get 360.
\frac{360}{7}=20x-x^{2}
Use the distributive property to multiply 20-x by x.
20x-x^{2}=\frac{360}{7}
Swap sides so that all variable terms are on the left hand side.
-x^{2}+20x=\frac{360}{7}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+20x}{-1}=\frac{\frac{360}{7}}{-1}
Divide both sides by -1.
x^{2}+\frac{20}{-1}x=\frac{\frac{360}{7}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-20x=\frac{\frac{360}{7}}{-1}
Divide 20 by -1.
x^{2}-20x=-\frac{360}{7}
Divide \frac{360}{7} by -1.
x^{2}-20x+\left(-10\right)^{2}=-\frac{360}{7}+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-\frac{360}{7}+100
Square -10.
x^{2}-20x+100=\frac{340}{7}
Add -\frac{360}{7} to 100.
\left(x-10\right)^{2}=\frac{340}{7}
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{\frac{340}{7}}
Take the square root of both sides of the equation.
x-10=\frac{2\sqrt{595}}{7} x-10=-\frac{2\sqrt{595}}{7}
Simplify.
x=\frac{2\sqrt{595}}{7}+10 x=-\frac{2\sqrt{595}}{7}+10
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}