Evaluate
7
Factor
7
Share
Copied to clipboard
\frac{5}{2}-\frac{\frac{3}{2}}{\frac{6-8}{3}}\times 4-\frac{9}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{2}-\frac{3\times 3}{2\left(6-8\right)}\times 4-\frac{9}{2}
Divide \frac{3}{2} by \frac{6-8}{3} by multiplying \frac{3}{2} by the reciprocal of \frac{6-8}{3}.
\frac{5}{2}-\frac{9}{2\left(6-8\right)}\times 4-\frac{9}{2}
Multiply 3 and 3 to get 9.
\frac{5}{2}-\frac{9}{2\left(-2\right)}\times 4-\frac{9}{2}
Subtract 8 from 6 to get -2.
\frac{5}{2}-\frac{9}{-4}\times 4-\frac{9}{2}
Multiply 2 and -2 to get -4.
\frac{5}{2}-\left(-\frac{9}{4}\times 4\right)-\frac{9}{2}
Fraction \frac{9}{-4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
\frac{5}{2}-\left(-9\right)-\frac{9}{2}
Cancel out 4 and 4.
\frac{5}{2}+9-\frac{9}{2}
The opposite of -9 is 9.
\frac{5}{2}+\frac{18}{2}-\frac{9}{2}
Convert 9 to fraction \frac{18}{2}.
\frac{5+18}{2}-\frac{9}{2}
Since \frac{5}{2} and \frac{18}{2} have the same denominator, add them by adding their numerators.
\frac{23}{2}-\frac{9}{2}
Add 5 and 18 to get 23.
\frac{23-9}{2}
Since \frac{23}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{14}{2}
Subtract 9 from 23 to get 14.
7
Divide 14 by 2 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}