Solve for n
n=-75
Share
Copied to clipboard
10n\times 10\times \frac{-4}{100}=300
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 300n, the least common multiple of 30,100,n.
100n\times \frac{-4}{100}=300
Multiply 10 and 10 to get 100.
100n\left(-\frac{1}{25}\right)=300
Reduce the fraction \frac{-4}{100} to lowest terms by extracting and canceling out 4.
\frac{100\left(-1\right)}{25}n=300
Express 100\left(-\frac{1}{25}\right) as a single fraction.
\frac{-100}{25}n=300
Multiply 100 and -1 to get -100.
-4n=300
Divide -100 by 25 to get -4.
n=\frac{300}{-4}
Divide both sides by -4.
n=-75
Divide 300 by -4 to get -75.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}