Verify
false
Share
Copied to clipboard
\frac{10}{3}-\frac{5\left(-4\right)}{3}+\frac{7}{2}+\frac{7}{8}\left(-4\right)=4-1
Express \frac{5}{3}\left(-4\right) as a single fraction.
\frac{10}{3}-\frac{-20}{3}+\frac{7}{2}+\frac{7}{8}\left(-4\right)=4-1
Multiply 5 and -4 to get -20.
\frac{10}{3}-\left(-\frac{20}{3}\right)+\frac{7}{2}+\frac{7}{8}\left(-4\right)=4-1
Fraction \frac{-20}{3} can be rewritten as -\frac{20}{3} by extracting the negative sign.
\frac{10}{3}+\frac{20}{3}+\frac{7}{2}+\frac{7}{8}\left(-4\right)=4-1
The opposite of -\frac{20}{3} is \frac{20}{3}.
\frac{10+20}{3}+\frac{7}{2}+\frac{7}{8}\left(-4\right)=4-1
Since \frac{10}{3} and \frac{20}{3} have the same denominator, add them by adding their numerators.
\frac{30}{3}+\frac{7}{2}+\frac{7}{8}\left(-4\right)=4-1
Add 10 and 20 to get 30.
10+\frac{7}{2}+\frac{7}{8}\left(-4\right)=4-1
Divide 30 by 3 to get 10.
\frac{20}{2}+\frac{7}{2}+\frac{7}{8}\left(-4\right)=4-1
Convert 10 to fraction \frac{20}{2}.
\frac{20+7}{2}+\frac{7}{8}\left(-4\right)=4-1
Since \frac{20}{2} and \frac{7}{2} have the same denominator, add them by adding their numerators.
\frac{27}{2}+\frac{7}{8}\left(-4\right)=4-1
Add 20 and 7 to get 27.
\frac{27}{2}+\frac{7\left(-4\right)}{8}=4-1
Express \frac{7}{8}\left(-4\right) as a single fraction.
\frac{27}{2}+\frac{-28}{8}=4-1
Multiply 7 and -4 to get -28.
\frac{27}{2}-\frac{7}{2}=4-1
Reduce the fraction \frac{-28}{8} to lowest terms by extracting and canceling out 4.
\frac{27-7}{2}=4-1
Since \frac{27}{2} and \frac{7}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{20}{2}=4-1
Subtract 7 from 27 to get 20.
10=4-1
Divide 20 by 2 to get 10.
10=3
Subtract 1 from 4 to get 3.
\text{false}
Compare 10 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}