Evaluate
-\frac{205}{12}\approx -17.083333333
Factor
-\frac{205}{12} = -17\frac{1}{12} = -17.083333333333332
Share
Copied to clipboard
\frac{10}{3}\left(\frac{1}{8}-\frac{10}{8}-\frac{1\times 5+7}{5}-\frac{8}{5}\right)
Least common multiple of 8 and 4 is 8. Convert \frac{1}{8} and \frac{5}{4} to fractions with denominator 8.
\frac{10}{3}\left(\frac{1-10}{8}-\frac{1\times 5+7}{5}-\frac{8}{5}\right)
Since \frac{1}{8} and \frac{10}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}\left(-\frac{9}{8}-\frac{1\times 5+7}{5}-\frac{8}{5}\right)
Subtract 10 from 1 to get -9.
\frac{10}{3}\left(-\frac{9}{8}-\frac{5+7}{5}-\frac{8}{5}\right)
Multiply 1 and 5 to get 5.
\frac{10}{3}\left(-\frac{9}{8}-\frac{12}{5}-\frac{8}{5}\right)
Add 5 and 7 to get 12.
\frac{10}{3}\left(-\frac{45}{40}-\frac{96}{40}-\frac{8}{5}\right)
Least common multiple of 8 and 5 is 40. Convert -\frac{9}{8} and \frac{12}{5} to fractions with denominator 40.
\frac{10}{3}\left(\frac{-45-96}{40}-\frac{8}{5}\right)
Since -\frac{45}{40} and \frac{96}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}\left(-\frac{141}{40}-\frac{8}{5}\right)
Subtract 96 from -45 to get -141.
\frac{10}{3}\left(-\frac{141}{40}-\frac{64}{40}\right)
Least common multiple of 40 and 5 is 40. Convert -\frac{141}{40} and \frac{8}{5} to fractions with denominator 40.
\frac{10}{3}\times \frac{-141-64}{40}
Since -\frac{141}{40} and \frac{64}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}\times \frac{-205}{40}
Subtract 64 from -141 to get -205.
\frac{10}{3}\left(-\frac{41}{8}\right)
Reduce the fraction \frac{-205}{40} to lowest terms by extracting and canceling out 5.
\frac{10\left(-41\right)}{3\times 8}
Multiply \frac{10}{3} times -\frac{41}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-410}{24}
Do the multiplications in the fraction \frac{10\left(-41\right)}{3\times 8}.
-\frac{205}{12}
Reduce the fraction \frac{-410}{24} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}