Evaluate
\frac{127}{30}\approx 4.233333333
Factor
\frac{127}{2 \cdot 3 \cdot 5} = 4\frac{7}{30} = 4.233333333333333
Share
Copied to clipboard
\frac{50}{15}+\frac{21}{15}-\frac{2}{4}
Least common multiple of 3 and 5 is 15. Convert \frac{10}{3} and \frac{7}{5} to fractions with denominator 15.
\frac{50+21}{15}-\frac{2}{4}
Since \frac{50}{15} and \frac{21}{15} have the same denominator, add them by adding their numerators.
\frac{71}{15}-\frac{2}{4}
Add 50 and 21 to get 71.
\frac{71}{15}-\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{142}{30}-\frac{15}{30}
Least common multiple of 15 and 2 is 30. Convert \frac{71}{15} and \frac{1}{2} to fractions with denominator 30.
\frac{142-15}{30}
Since \frac{142}{30} and \frac{15}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{127}{30}
Subtract 15 from 142 to get 127.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}