Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{10\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)}
Rationalize the denominator of \frac{10}{3\sqrt{2}-\sqrt{3}} by multiplying numerator and denominator by 3\sqrt{2}+\sqrt{3}.
\frac{10\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(3\sqrt{2}+\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{10\left(3\sqrt{2}+\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{10\left(3\sqrt{2}+\sqrt{3}\right)}{9\times 2-\left(\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{10\left(3\sqrt{2}+\sqrt{3}\right)}{18-\left(\sqrt{3}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{10\left(3\sqrt{2}+\sqrt{3}\right)}{18-3}
The square of \sqrt{3} is 3.
\frac{10\left(3\sqrt{2}+\sqrt{3}\right)}{15}
Subtract 3 from 18 to get 15.
\frac{2}{3}\left(3\sqrt{2}+\sqrt{3}\right)
Divide 10\left(3\sqrt{2}+\sqrt{3}\right) by 15 to get \frac{2}{3}\left(3\sqrt{2}+\sqrt{3}\right).
\frac{2}{3}\times 3\sqrt{2}+\frac{2}{3}\sqrt{3}
Use the distributive property to multiply \frac{2}{3} by 3\sqrt{2}+\sqrt{3}.
2\sqrt{2}+\frac{2}{3}\sqrt{3}
Cancel out 3 and 3.