Solve for y
y=6
Graph
Share
Copied to clipboard
\left(y-4\right)\times 10-2\left(7y+8\right)=\left(y+4\right)\left(-8\right)
Variable y cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by 2\left(y-4\right)\left(y+4\right), the least common multiple of 2y+8,y^{2}-16,2y-8.
10y-40-2\left(7y+8\right)=\left(y+4\right)\left(-8\right)
Use the distributive property to multiply y-4 by 10.
10y-40-14y-16=\left(y+4\right)\left(-8\right)
Use the distributive property to multiply -2 by 7y+8.
-4y-40-16=\left(y+4\right)\left(-8\right)
Combine 10y and -14y to get -4y.
-4y-56=\left(y+4\right)\left(-8\right)
Subtract 16 from -40 to get -56.
-4y-56=-8y-32
Use the distributive property to multiply y+4 by -8.
-4y-56+8y=-32
Add 8y to both sides.
4y-56=-32
Combine -4y and 8y to get 4y.
4y=-32+56
Add 56 to both sides.
4y=24
Add -32 and 56 to get 24.
y=\frac{24}{4}
Divide both sides by 4.
y=6
Divide 24 by 4 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}