Solve for x
x=-8
Graph
Share
Copied to clipboard
\left(x-5\right)\times 10-\left(x-7\right)\times 8=\left(x+3\right)\left(x+10\right)
Variable x cannot be equal to any of the values -3,5,7 since division by zero is not defined. Multiply both sides of the equation by \left(x-7\right)\left(x-5\right)\left(x+3\right), the least common multiple of \left(x+3\right)\left(x-7\right),\left(x+3\right)\left(x-5\right),\left(x-5\right)\left(x-7\right).
10x-50-\left(x-7\right)\times 8=\left(x+3\right)\left(x+10\right)
Use the distributive property to multiply x-5 by 10.
10x-50-\left(8x-56\right)=\left(x+3\right)\left(x+10\right)
Use the distributive property to multiply x-7 by 8.
10x-50-8x+56=\left(x+3\right)\left(x+10\right)
To find the opposite of 8x-56, find the opposite of each term.
2x-50+56=\left(x+3\right)\left(x+10\right)
Combine 10x and -8x to get 2x.
2x+6=\left(x+3\right)\left(x+10\right)
Add -50 and 56 to get 6.
2x+6=x^{2}+13x+30
Use the distributive property to multiply x+3 by x+10 and combine like terms.
2x+6-x^{2}=13x+30
Subtract x^{2} from both sides.
2x+6-x^{2}-13x=30
Subtract 13x from both sides.
-11x+6-x^{2}=30
Combine 2x and -13x to get -11x.
-11x+6-x^{2}-30=0
Subtract 30 from both sides.
-11x-24-x^{2}=0
Subtract 30 from 6 to get -24.
-x^{2}-11x-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -11 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+4\left(-24\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-11\right)±\sqrt{121-96}}{2\left(-1\right)}
Multiply 4 times -24.
x=\frac{-\left(-11\right)±\sqrt{25}}{2\left(-1\right)}
Add 121 to -96.
x=\frac{-\left(-11\right)±5}{2\left(-1\right)}
Take the square root of 25.
x=\frac{11±5}{2\left(-1\right)}
The opposite of -11 is 11.
x=\frac{11±5}{-2}
Multiply 2 times -1.
x=\frac{16}{-2}
Now solve the equation x=\frac{11±5}{-2} when ± is plus. Add 11 to 5.
x=-8
Divide 16 by -2.
x=\frac{6}{-2}
Now solve the equation x=\frac{11±5}{-2} when ± is minus. Subtract 5 from 11.
x=-3
Divide 6 by -2.
x=-8 x=-3
The equation is now solved.
x=-8
Variable x cannot be equal to -3.
\left(x-5\right)\times 10-\left(x-7\right)\times 8=\left(x+3\right)\left(x+10\right)
Variable x cannot be equal to any of the values -3,5,7 since division by zero is not defined. Multiply both sides of the equation by \left(x-7\right)\left(x-5\right)\left(x+3\right), the least common multiple of \left(x+3\right)\left(x-7\right),\left(x+3\right)\left(x-5\right),\left(x-5\right)\left(x-7\right).
10x-50-\left(x-7\right)\times 8=\left(x+3\right)\left(x+10\right)
Use the distributive property to multiply x-5 by 10.
10x-50-\left(8x-56\right)=\left(x+3\right)\left(x+10\right)
Use the distributive property to multiply x-7 by 8.
10x-50-8x+56=\left(x+3\right)\left(x+10\right)
To find the opposite of 8x-56, find the opposite of each term.
2x-50+56=\left(x+3\right)\left(x+10\right)
Combine 10x and -8x to get 2x.
2x+6=\left(x+3\right)\left(x+10\right)
Add -50 and 56 to get 6.
2x+6=x^{2}+13x+30
Use the distributive property to multiply x+3 by x+10 and combine like terms.
2x+6-x^{2}=13x+30
Subtract x^{2} from both sides.
2x+6-x^{2}-13x=30
Subtract 13x from both sides.
-11x+6-x^{2}=30
Combine 2x and -13x to get -11x.
-11x-x^{2}=30-6
Subtract 6 from both sides.
-11x-x^{2}=24
Subtract 6 from 30 to get 24.
-x^{2}-11x=24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-11x}{-1}=\frac{24}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{11}{-1}\right)x=\frac{24}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+11x=\frac{24}{-1}
Divide -11 by -1.
x^{2}+11x=-24
Divide 24 by -1.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-24+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=-24+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{25}{4}
Add -24 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{5}{2} x+\frac{11}{2}=-\frac{5}{2}
Simplify.
x=-3 x=-8
Subtract \frac{11}{2} from both sides of the equation.
x=-8
Variable x cannot be equal to -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}