Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{10}{2\sqrt{2}-\sqrt{6}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{10\left(2\sqrt{2}+\sqrt{6}\right)}{\left(2\sqrt{2}-\sqrt{6}\right)\left(2\sqrt{2}+\sqrt{6}\right)}
Rationalize the denominator of \frac{10}{2\sqrt{2}-\sqrt{6}} by multiplying numerator and denominator by 2\sqrt{2}+\sqrt{6}.
\frac{10\left(2\sqrt{2}+\sqrt{6}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(2\sqrt{2}-\sqrt{6}\right)\left(2\sqrt{2}+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(2\sqrt{2}+\sqrt{6}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{10\left(2\sqrt{2}+\sqrt{6}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{10\left(2\sqrt{2}+\sqrt{6}\right)}{4\times 2-\left(\sqrt{6}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{10\left(2\sqrt{2}+\sqrt{6}\right)}{8-\left(\sqrt{6}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{10\left(2\sqrt{2}+\sqrt{6}\right)}{8-6}
The square of \sqrt{6} is 6.
\frac{10\left(2\sqrt{2}+\sqrt{6}\right)}{2}
Subtract 6 from 8 to get 2.
5\left(2\sqrt{2}+\sqrt{6}\right)
Divide 10\left(2\sqrt{2}+\sqrt{6}\right) by 2 to get 5\left(2\sqrt{2}+\sqrt{6}\right).
10\sqrt{2}+5\sqrt{6}
Use the distributive property to multiply 5 by 2\sqrt{2}+\sqrt{6}.