Evaluate
\frac{25\left(\sqrt{5}+1\right)}{12}\approx 6.741808286
Share
Copied to clipboard
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\left(\frac{6}{5}\sqrt{5}-1.2\right)\left(\frac{6}{5}\sqrt{5}+1.2\right)}
Rationalize the denominator of \frac{10}{\frac{6}{5}\sqrt{5}-1.2} by multiplying numerator and denominator by \frac{6}{5}\sqrt{5}+1.2.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\left(\frac{6}{5}\sqrt{5}\right)^{2}-1.2^{2}}
Consider \left(\frac{6}{5}\sqrt{5}-1.2\right)\left(\frac{6}{5}\sqrt{5}+1.2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\left(\frac{6}{5}\right)^{2}\left(\sqrt{5}\right)^{2}-1.2^{2}}
Expand \left(\frac{6}{5}\sqrt{5}\right)^{2}.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36}{25}\left(\sqrt{5}\right)^{2}-1.2^{2}}
Calculate \frac{6}{5} to the power of 2 and get \frac{36}{25}.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36}{25}\times 5-1.2^{2}}
The square of \sqrt{5} is 5.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36\times 5}{25}-1.2^{2}}
Express \frac{36}{25}\times 5 as a single fraction.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{180}{25}-1.2^{2}}
Multiply 36 and 5 to get 180.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36}{5}-1.2^{2}}
Reduce the fraction \frac{180}{25} to lowest terms by extracting and canceling out 5.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36}{5}-\frac{36}{25}}
Calculate 1.2 to the power of 2 and get \frac{36}{25}.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{180}{25}-\frac{36}{25}}
Least common multiple of 5 and 25 is 25. Convert \frac{36}{5} and \frac{36}{25} to fractions with denominator 25.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{180-36}{25}}
Since \frac{180}{25} and \frac{36}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{144}{25}}
Subtract 36 from 180 to get 144.
\frac{125}{72}\left(\frac{6}{5}\sqrt{5}+1.2\right)
Divide 10\left(\frac{6}{5}\sqrt{5}+1.2\right) by \frac{144}{25} to get \frac{125}{72}\left(\frac{6}{5}\sqrt{5}+1.2\right).
\frac{125}{72}\times \frac{6}{5}\sqrt{5}+\frac{125}{72}\times 1.2
Use the distributive property to multiply \frac{125}{72} by \frac{6}{5}\sqrt{5}+1.2.
\frac{125\times 6}{72\times 5}\sqrt{5}+\frac{125}{72}\times 1.2
Multiply \frac{125}{72} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{750}{360}\sqrt{5}+\frac{125}{72}\times 1.2
Do the multiplications in the fraction \frac{125\times 6}{72\times 5}.
\frac{25}{12}\sqrt{5}+\frac{125}{72}\times 1.2
Reduce the fraction \frac{750}{360} to lowest terms by extracting and canceling out 30.
\frac{25}{12}\sqrt{5}+\frac{125}{72}\times \frac{6}{5}
Convert decimal number 1.2 to fraction \frac{12}{10}. Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{25}{12}\sqrt{5}+\frac{125\times 6}{72\times 5}
Multiply \frac{125}{72} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{12}\sqrt{5}+\frac{750}{360}
Do the multiplications in the fraction \frac{125\times 6}{72\times 5}.
\frac{25}{12}\sqrt{5}+\frac{25}{12}
Reduce the fraction \frac{750}{360} to lowest terms by extracting and canceling out 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}