Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\left(\frac{6}{5}\sqrt{5}-1.2\right)\left(\frac{6}{5}\sqrt{5}+1.2\right)}
Rationalize the denominator of \frac{10}{\frac{6}{5}\sqrt{5}-1.2} by multiplying numerator and denominator by \frac{6}{5}\sqrt{5}+1.2.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\left(\frac{6}{5}\sqrt{5}\right)^{2}-1.2^{2}}
Consider \left(\frac{6}{5}\sqrt{5}-1.2\right)\left(\frac{6}{5}\sqrt{5}+1.2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\left(\frac{6}{5}\right)^{2}\left(\sqrt{5}\right)^{2}-1.2^{2}}
Expand \left(\frac{6}{5}\sqrt{5}\right)^{2}.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36}{25}\left(\sqrt{5}\right)^{2}-1.2^{2}}
Calculate \frac{6}{5} to the power of 2 and get \frac{36}{25}.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36}{25}\times 5-1.2^{2}}
The square of \sqrt{5} is 5.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36\times 5}{25}-1.2^{2}}
Express \frac{36}{25}\times 5 as a single fraction.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{180}{25}-1.2^{2}}
Multiply 36 and 5 to get 180.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36}{5}-1.2^{2}}
Reduce the fraction \frac{180}{25} to lowest terms by extracting and canceling out 5.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{36}{5}-\frac{36}{25}}
Calculate 1.2 to the power of 2 and get \frac{36}{25}.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{180}{25}-\frac{36}{25}}
Least common multiple of 5 and 25 is 25. Convert \frac{36}{5} and \frac{36}{25} to fractions with denominator 25.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{180-36}{25}}
Since \frac{180}{25} and \frac{36}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{10\left(\frac{6}{5}\sqrt{5}+1.2\right)}{\frac{144}{25}}
Subtract 36 from 180 to get 144.
\frac{125}{72}\left(\frac{6}{5}\sqrt{5}+1.2\right)
Divide 10\left(\frac{6}{5}\sqrt{5}+1.2\right) by \frac{144}{25} to get \frac{125}{72}\left(\frac{6}{5}\sqrt{5}+1.2\right).
\frac{125}{72}\times \frac{6}{5}\sqrt{5}+\frac{125}{72}\times 1.2
Use the distributive property to multiply \frac{125}{72} by \frac{6}{5}\sqrt{5}+1.2.
\frac{125\times 6}{72\times 5}\sqrt{5}+\frac{125}{72}\times 1.2
Multiply \frac{125}{72} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{750}{360}\sqrt{5}+\frac{125}{72}\times 1.2
Do the multiplications in the fraction \frac{125\times 6}{72\times 5}.
\frac{25}{12}\sqrt{5}+\frac{125}{72}\times 1.2
Reduce the fraction \frac{750}{360} to lowest terms by extracting and canceling out 30.
\frac{25}{12}\sqrt{5}+\frac{125}{72}\times \frac{6}{5}
Convert decimal number 1.2 to fraction \frac{12}{10}. Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{25}{12}\sqrt{5}+\frac{125\times 6}{72\times 5}
Multiply \frac{125}{72} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{12}\sqrt{5}+\frac{750}{360}
Do the multiplications in the fraction \frac{125\times 6}{72\times 5}.
\frac{25}{12}\sqrt{5}+\frac{25}{12}
Reduce the fraction \frac{750}{360} to lowest terms by extracting and canceling out 30.