Solve for M
M=58
Share
Copied to clipboard
2M\times 10\times 0.006=\frac{3}{2}\times 10^{-2}\times 6M+6\times 29\times 10^{-2}
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6M, the least common multiple of 3,2,M.
20M\times 0.006=\frac{3}{2}\times 10^{-2}\times 6M+6\times 29\times 10^{-2}
Multiply 2 and 10 to get 20.
0.12M=\frac{3}{2}\times 10^{-2}\times 6M+6\times 29\times 10^{-2}
Multiply 20 and 0.006 to get 0.12.
0.12M=\frac{3}{2}\times \frac{1}{100}\times 6M+6\times 29\times 10^{-2}
Calculate 10 to the power of -2 and get \frac{1}{100}.
0.12M=\frac{3}{200}\times 6M+6\times 29\times 10^{-2}
Multiply \frac{3}{2} and \frac{1}{100} to get \frac{3}{200}.
0.12M=\frac{9}{100}M+6\times 29\times 10^{-2}
Multiply \frac{3}{200} and 6 to get \frac{9}{100}.
0.12M=\frac{9}{100}M+174\times 10^{-2}
Multiply 6 and 29 to get 174.
0.12M=\frac{9}{100}M+174\times \frac{1}{100}
Calculate 10 to the power of -2 and get \frac{1}{100}.
0.12M=\frac{9}{100}M+\frac{87}{50}
Multiply 174 and \frac{1}{100} to get \frac{87}{50}.
0.12M-\frac{9}{100}M=\frac{87}{50}
Subtract \frac{9}{100}M from both sides.
\frac{3}{100}M=\frac{87}{50}
Combine 0.12M and -\frac{9}{100}M to get \frac{3}{100}M.
M=\frac{87}{50}\times \frac{100}{3}
Multiply both sides by \frac{100}{3}, the reciprocal of \frac{3}{100}.
M=58
Multiply \frac{87}{50} and \frac{100}{3} to get 58.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}