Evaluate
\frac{7}{2}=3.5
Factor
\frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
\frac{10\sqrt{6}\sqrt{49}}{\sqrt{48}\times 5\sqrt{2}}
Divide \frac{10\sqrt{6}}{\sqrt{48}} by \frac{5\sqrt{2}}{\sqrt{49}} by multiplying \frac{10\sqrt{6}}{\sqrt{48}} by the reciprocal of \frac{5\sqrt{2}}{\sqrt{49}}.
\frac{2\sqrt{6}\sqrt{49}}{\sqrt{2}\sqrt{48}}
Cancel out 5 in both numerator and denominator.
\frac{2\sqrt{6}\times 7}{\sqrt{2}\sqrt{48}}
Calculate the square root of 49 and get 7.
\frac{14\sqrt{6}}{\sqrt{2}\sqrt{48}}
Multiply 2 and 7 to get 14.
\frac{14\sqrt{6}}{\sqrt{2}\sqrt{2}\sqrt{24}}
Factor 48=2\times 24. Rewrite the square root of the product \sqrt{2\times 24} as the product of square roots \sqrt{2}\sqrt{24}.
\frac{14\sqrt{6}}{2\sqrt{24}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{14\sqrt{6}}{2\times 2\sqrt{6}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{14\sqrt{6}}{4\sqrt{6}}
Multiply 2 and 2 to get 4.
\frac{7}{2}
Cancel out 2\sqrt{6} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}