\frac { 10 \frac { m } { s } \times 0,2 m } { 1,01 \times 10 ^ { - 6 } \frac { m ^ { 2 } } { s } }
Evaluate
\frac{200000000}{101}\approx 1980198,01980198
Factor
\frac{2 ^ {9} \cdot 5 ^ {8}}{101} = 1980198\frac{2}{101} = 1980198.0198019801
Share
Copied to clipboard
\frac{2\times \frac{m}{s}m}{1,01\times 10^{-6}\times \frac{m^{2}}{s}}
Multiply 10 and 0,2 to get 2.
\frac{\frac{2m}{s}m}{1,01\times 10^{-6}\times \frac{m^{2}}{s}}
Express 2\times \frac{m}{s} as a single fraction.
\frac{\frac{2mm}{s}}{1,01\times 10^{-6}\times \frac{m^{2}}{s}}
Express \frac{2m}{s}m as a single fraction.
\frac{\frac{2mm}{s}}{1,01\times \frac{1}{1000000}\times \frac{m^{2}}{s}}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{\frac{2mm}{s}}{\frac{101}{100000000}\times \frac{m^{2}}{s}}
Multiply 1,01 and \frac{1}{1000000} to get \frac{101}{100000000}.
\frac{\frac{2mm}{s}}{\frac{101m^{2}}{100000000s}}
Multiply \frac{101}{100000000} times \frac{m^{2}}{s} by multiplying numerator times numerator and denominator times denominator.
\frac{2mm\times 100000000s}{s\times 101m^{2}}
Divide \frac{2mm}{s} by \frac{101m^{2}}{100000000s} by multiplying \frac{2mm}{s} by the reciprocal of \frac{101m^{2}}{100000000s}.
\frac{2\times 100000000}{101}
Cancel out mms in both numerator and denominator.
\frac{200000000}{101}
Multiply 2 and 100000000 to get 200000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}