Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{6i^{2}+10+19i}{5+2i}
Do the additions in 10+4i+15i.
\frac{6\left(-1\right)+10+19i}{5+2i}
Calculate i to the power of 2 and get -1.
\frac{-6+10+19i}{5+2i}
Multiply 6 and -1 to get -6.
\frac{4+19i}{5+2i}
Do the additions in -6+10+19i.
\frac{\left(4+19i\right)\left(5-2i\right)}{\left(5+2i\right)\left(5-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-2i.
\frac{58+87i}{29}
Do the multiplications in \frac{\left(4+19i\right)\left(5-2i\right)}{\left(5+2i\right)\left(5-2i\right)}.
2+3i
Divide 58+87i by 29 to get 2+3i.
Re(\frac{6i^{2}+10+19i}{5+2i})
Do the additions in 10+4i+15i.
Re(\frac{6\left(-1\right)+10+19i}{5+2i})
Calculate i to the power of 2 and get -1.
Re(\frac{-6+10+19i}{5+2i})
Multiply 6 and -1 to get -6.
Re(\frac{4+19i}{5+2i})
Do the additions in -6+10+19i.
Re(\frac{\left(4+19i\right)\left(5-2i\right)}{\left(5+2i\right)\left(5-2i\right)})
Multiply both numerator and denominator of \frac{4+19i}{5+2i} by the complex conjugate of the denominator, 5-2i.
Re(\frac{58+87i}{29})
Do the multiplications in \frac{\left(4+19i\right)\left(5-2i\right)}{\left(5+2i\right)\left(5-2i\right)}.
Re(2+3i)
Divide 58+87i by 29 to get 2+3i.
2
The real part of 2+3i is 2.