Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(10+10i\right)\left(1+8i\right)}{\left(1-8i\right)\left(1+8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+8i.
\frac{\left(10+10i\right)\left(1+8i\right)}{1^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(10+10i\right)\left(1+8i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
\frac{10\times 1+10\times \left(8i\right)+10i\times 1+10\times 8i^{2}}{65}
Multiply complex numbers 10+10i and 1+8i like you multiply binomials.
\frac{10\times 1+10\times \left(8i\right)+10i\times 1+10\times 8\left(-1\right)}{65}
By definition, i^{2} is -1.
\frac{10+80i+10i-80}{65}
Do the multiplications in 10\times 1+10\times \left(8i\right)+10i\times 1+10\times 8\left(-1\right).
\frac{10-80+\left(80+10\right)i}{65}
Combine the real and imaginary parts in 10+80i+10i-80.
\frac{-70+90i}{65}
Do the additions in 10-80+\left(80+10\right)i.
-\frac{14}{13}+\frac{18}{13}i
Divide -70+90i by 65 to get -\frac{14}{13}+\frac{18}{13}i.
Re(\frac{\left(10+10i\right)\left(1+8i\right)}{\left(1-8i\right)\left(1+8i\right)})
Multiply both numerator and denominator of \frac{10+10i}{1-8i} by the complex conjugate of the denominator, 1+8i.
Re(\frac{\left(10+10i\right)\left(1+8i\right)}{1^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(10+10i\right)\left(1+8i\right)}{65})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{10\times 1+10\times \left(8i\right)+10i\times 1+10\times 8i^{2}}{65})
Multiply complex numbers 10+10i and 1+8i like you multiply binomials.
Re(\frac{10\times 1+10\times \left(8i\right)+10i\times 1+10\times 8\left(-1\right)}{65})
By definition, i^{2} is -1.
Re(\frac{10+80i+10i-80}{65})
Do the multiplications in 10\times 1+10\times \left(8i\right)+10i\times 1+10\times 8\left(-1\right).
Re(\frac{10-80+\left(80+10\right)i}{65})
Combine the real and imaginary parts in 10+80i+10i-80.
Re(\frac{-70+90i}{65})
Do the additions in 10-80+\left(80+10\right)i.
Re(-\frac{14}{13}+\frac{18}{13}i)
Divide -70+90i by 65 to get -\frac{14}{13}+\frac{18}{13}i.
-\frac{14}{13}
The real part of -\frac{14}{13}+\frac{18}{13}i is -\frac{14}{13}.