Solve for x
x=-\frac{\sqrt{6}i}{2}+5\approx 5-1.224744871i
Share
Copied to clipboard
10+\sqrt{-6}-2x=2\sqrt{-6}
Multiply both sides of the equation by 2.
10+\sqrt{6}i-2x=2\sqrt{-6}
Factor -6=6\left(-1\right). Rewrite the square root of the product \sqrt{6\left(-1\right)} as the product of square roots \sqrt{6}\sqrt{-1}. By definition, the square root of -1 is i.
10+\sqrt{6}i-2x=2\sqrt{6}i
Factor -6=6\left(-1\right). Rewrite the square root of the product \sqrt{6\left(-1\right)} as the product of square roots \sqrt{6}\sqrt{-1}. By definition, the square root of -1 is i.
10+\sqrt{6}i-2x=2i\sqrt{6}
Multiply 2 and i to get 2i.
\sqrt{6}i-2x=2i\sqrt{6}-10
Subtract 10 from both sides.
-2x=2i\sqrt{6}-10-\sqrt{6}i
Subtract \sqrt{6}i from both sides.
-2x=i\sqrt{6}-10
Combine 2i\sqrt{6} and -\sqrt{6}i to get i\sqrt{6}.
-2x=-10+\sqrt{6}i
The equation is in standard form.
\frac{-2x}{-2}=\frac{-10+\sqrt{6}i}{-2}
Divide both sides by -2.
x=\frac{-10+\sqrt{6}i}{-2}
Dividing by -2 undoes the multiplication by -2.
x=-\frac{\sqrt{6}i}{2}+5
Divide i\sqrt{6}-10 by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}