Solve for x
x=\frac{51}{1810}\approx 0.028176796
Graph
Share
Copied to clipboard
2\times \frac{1.8-8x}{1.2}-\left(1.3-3x\right)=2\times \frac{5x-0.4}{0.2}+4
Multiply both sides of the equation by 2.
2\times \frac{1.8-8x}{1.2}-1.3-\left(-3x\right)=2\times \frac{5x-0.4}{0.2}+4
To find the opposite of 1.3-3x, find the opposite of each term.
2\times \frac{1.8-8x}{1.2}-1.3+3x=2\times \frac{5x-0.4}{0.2}+4
The opposite of -3x is 3x.
2\left(\frac{1.8}{1.2}+\frac{-8x}{1.2}\right)-1.3+3x=2\times \frac{5x-0.4}{0.2}+4
Divide each term of 1.8-8x by 1.2 to get \frac{1.8}{1.2}+\frac{-8x}{1.2}.
2\left(\frac{18}{12}+\frac{-8x}{1.2}\right)-1.3+3x=2\times \frac{5x-0.4}{0.2}+4
Expand \frac{1.8}{1.2} by multiplying both numerator and the denominator by 10.
2\left(\frac{3}{2}+\frac{-8x}{1.2}\right)-1.3+3x=2\times \frac{5x-0.4}{0.2}+4
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
2\left(\frac{3}{2}-\frac{20}{3}x\right)-1.3+3x=2\times \frac{5x-0.4}{0.2}+4
Divide -8x by 1.2 to get -\frac{20}{3}x.
2\times \frac{3}{2}-\frac{40}{3}x-1.3+3x=2\times \frac{5x-0.4}{0.2}+4
Use the distributive property to multiply 2 by \frac{3}{2}-\frac{20}{3}x.
3-\frac{40}{3}x-1.3+3x=2\times \frac{5x-0.4}{0.2}+4
Cancel out 2 and 2.
1.7-\frac{40}{3}x+3x=2\times \frac{5x-0.4}{0.2}+4
Subtract 1.3 from 3 to get 1.7.
1.7-\frac{31}{3}x=2\times \frac{5x-0.4}{0.2}+4
Combine -\frac{40}{3}x and 3x to get -\frac{31}{3}x.
1.7-\frac{31}{3}x=2\left(\frac{5x}{0.2}+\frac{-0.4}{0.2}\right)+4
Divide each term of 5x-0.4 by 0.2 to get \frac{5x}{0.2}+\frac{-0.4}{0.2}.
1.7-\frac{31}{3}x=2\left(25x+\frac{-0.4}{0.2}\right)+4
Divide 5x by 0.2 to get 25x.
1.7-\frac{31}{3}x=2\left(25x+\frac{-4}{2}\right)+4
Expand \frac{-0.4}{0.2} by multiplying both numerator and the denominator by 10.
1.7-\frac{31}{3}x=2\left(25x-2\right)+4
Divide -4 by 2 to get -2.
1.7-\frac{31}{3}x=50x-4+4
Use the distributive property to multiply 2 by 25x-2.
1.7-\frac{31}{3}x=50x
Add -4 and 4 to get 0.
1.7-\frac{31}{3}x-50x=0
Subtract 50x from both sides.
1.7-\frac{181}{3}x=0
Combine -\frac{31}{3}x and -50x to get -\frac{181}{3}x.
-\frac{181}{3}x=-1.7
Subtract 1.7 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-1.7}{-\frac{181}{3}}
Divide both sides by -\frac{181}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}