Solve for x
x\leq \frac{4}{3}
Graph
Share
Copied to clipboard
6\times \frac{1.5x-1}{0.3}-\left(9x+2\right)\leq 6
Multiply both sides of the equation by 6. Since 6 is positive, the inequality direction remains the same.
6\times \frac{1.5x-1}{0.3}-9x-2\leq 6
To find the opposite of 9x+2, find the opposite of each term.
6\left(\frac{1.5x}{0.3}+\frac{-1}{0.3}\right)-9x-2\leq 6
Divide each term of 1.5x-1 by 0.3 to get \frac{1.5x}{0.3}+\frac{-1}{0.3}.
6\left(5x+\frac{-1}{0.3}\right)-9x-2\leq 6
Divide 1.5x by 0.3 to get 5x.
6\left(5x+\frac{-10}{3}\right)-9x-2\leq 6
Expand \frac{-1}{0.3} by multiplying both numerator and the denominator by 10.
6\left(5x-\frac{10}{3}\right)-9x-2\leq 6
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
30x+6\left(-\frac{10}{3}\right)-9x-2\leq 6
Use the distributive property to multiply 6 by 5x-\frac{10}{3}.
30x+\frac{6\left(-10\right)}{3}-9x-2\leq 6
Express 6\left(-\frac{10}{3}\right) as a single fraction.
30x+\frac{-60}{3}-9x-2\leq 6
Multiply 6 and -10 to get -60.
30x-20-9x-2\leq 6
Divide -60 by 3 to get -20.
21x-20-2\leq 6
Combine 30x and -9x to get 21x.
21x-22\leq 6
Subtract 2 from -20 to get -22.
21x\leq 6+22
Add 22 to both sides.
21x\leq 28
Add 6 and 22 to get 28.
x\leq \frac{28}{21}
Divide both sides by 21. Since 21 is positive, the inequality direction remains the same.
x\leq \frac{4}{3}
Reduce the fraction \frac{28}{21} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}