Solve for v
v = \frac{2660}{17} = 156\frac{8}{17} \approx 156.470588235
Share
Copied to clipboard
40\times 1.33+40v\left(-\frac{1}{40}\right)=-2v\left(1.33-1\right)
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 40v, the least common multiple of v,40,-20.
53.2+40v\left(-\frac{1}{40}\right)=-2v\left(1.33-1\right)
Multiply 40 and 1.33 to get 53.2.
53.2-v=-2v\left(1.33-1\right)
Cancel out 40 and 40.
53.2-v=-2v\times 0.33
Subtract 1 from 1.33 to get 0.33.
53.2-v=-0.66v
Multiply -2 and 0.33 to get -0.66.
53.2-v+0.66v=0
Add 0.66v to both sides.
53.2-0.34v=0
Combine -v and 0.66v to get -0.34v.
-0.34v=-53.2
Subtract 53.2 from both sides. Anything subtracted from zero gives its negation.
v=\frac{-53.2}{-0.34}
Divide both sides by -0.34.
v=\frac{-5320}{-34}
Expand \frac{-53.2}{-0.34} by multiplying both numerator and the denominator by 100.
v=\frac{2660}{17}
Reduce the fraction \frac{-5320}{-34} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}