Solve for d
d = \frac{2 \sqrt{210}}{15} \approx 1.932183566
d = -\frac{2 \sqrt{210}}{15} \approx -1.932183566
Share
Copied to clipboard
1\times 10^{-6}=\frac{25}{49}d^{2}\times 5.25\times 10^{-7}
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by d^{2}.
1\times \frac{1}{1000000}=\frac{25}{49}d^{2}\times 5.25\times 10^{-7}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{1}{1000000}=\frac{25}{49}d^{2}\times 5.25\times 10^{-7}
Multiply 1 and \frac{1}{1000000} to get \frac{1}{1000000}.
\frac{1}{1000000}=\frac{75}{28}d^{2}\times 10^{-7}
Multiply \frac{25}{49} and 5.25 to get \frac{75}{28}.
\frac{1}{1000000}=\frac{75}{28}d^{2}\times \frac{1}{10000000}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{1}{1000000}=\frac{3}{11200000}d^{2}
Multiply \frac{75}{28} and \frac{1}{10000000} to get \frac{3}{11200000}.
\frac{3}{11200000}d^{2}=\frac{1}{1000000}
Swap sides so that all variable terms are on the left hand side.
d^{2}=\frac{1}{1000000}\times \frac{11200000}{3}
Multiply both sides by \frac{11200000}{3}, the reciprocal of \frac{3}{11200000}.
d^{2}=\frac{56}{15}
Multiply \frac{1}{1000000} and \frac{11200000}{3} to get \frac{56}{15}.
d=\frac{2\sqrt{210}}{15} d=-\frac{2\sqrt{210}}{15}
Take the square root of both sides of the equation.
1\times 10^{-6}=\frac{25}{49}d^{2}\times 5.25\times 10^{-7}
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by d^{2}.
1\times \frac{1}{1000000}=\frac{25}{49}d^{2}\times 5.25\times 10^{-7}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{1}{1000000}=\frac{25}{49}d^{2}\times 5.25\times 10^{-7}
Multiply 1 and \frac{1}{1000000} to get \frac{1}{1000000}.
\frac{1}{1000000}=\frac{75}{28}d^{2}\times 10^{-7}
Multiply \frac{25}{49} and 5.25 to get \frac{75}{28}.
\frac{1}{1000000}=\frac{75}{28}d^{2}\times \frac{1}{10000000}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{1}{1000000}=\frac{3}{11200000}d^{2}
Multiply \frac{75}{28} and \frac{1}{10000000} to get \frac{3}{11200000}.
\frac{3}{11200000}d^{2}=\frac{1}{1000000}
Swap sides so that all variable terms are on the left hand side.
\frac{3}{11200000}d^{2}-\frac{1}{1000000}=0
Subtract \frac{1}{1000000} from both sides.
d=\frac{0±\sqrt{0^{2}-4\times \frac{3}{11200000}\left(-\frac{1}{1000000}\right)}}{2\times \frac{3}{11200000}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{11200000} for a, 0 for b, and -\frac{1}{1000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{0±\sqrt{-4\times \frac{3}{11200000}\left(-\frac{1}{1000000}\right)}}{2\times \frac{3}{11200000}}
Square 0.
d=\frac{0±\sqrt{-\frac{3}{2800000}\left(-\frac{1}{1000000}\right)}}{2\times \frac{3}{11200000}}
Multiply -4 times \frac{3}{11200000}.
d=\frac{0±\sqrt{\frac{3}{2800000000000}}}{2\times \frac{3}{11200000}}
Multiply -\frac{3}{2800000} times -\frac{1}{1000000} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
d=\frac{0±\frac{\sqrt{210}}{14000000}}{2\times \frac{3}{11200000}}
Take the square root of \frac{3}{2800000000000}.
d=\frac{0±\frac{\sqrt{210}}{14000000}}{\frac{3}{5600000}}
Multiply 2 times \frac{3}{11200000}.
d=\frac{2\sqrt{210}}{15}
Now solve the equation d=\frac{0±\frac{\sqrt{210}}{14000000}}{\frac{3}{5600000}} when ± is plus.
d=-\frac{2\sqrt{210}}{15}
Now solve the equation d=\frac{0±\frac{\sqrt{210}}{14000000}}{\frac{3}{5600000}} when ± is minus.
d=\frac{2\sqrt{210}}{15} d=-\frac{2\sqrt{210}}{15}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}