\frac { 1,94 - \sqrt[ 3 ] { ( - 1 ) ^ { 5 } } - ( \frac { 50 } { 27 } ) ^ { - 1 } } { \frac { \sqrt { 24 } \sqrt { 2 } } { 15 } }
Evaluate
3\sqrt{3}\approx 5.196152423
Share
Copied to clipboard
\frac{1,94-\sqrt[3]{-1}-\left(\frac{50}{27}\right)^{-1}}{\frac{\sqrt{24}\sqrt{2}}{15}}
Calculate -1 to the power of 5 and get -1.
\frac{1,94-\left(-1\right)-\left(\frac{50}{27}\right)^{-1}}{\frac{\sqrt{24}\sqrt{2}}{15}}
Calculate \sqrt[3]{-1} and get -1.
\frac{1,94+1-\left(\frac{50}{27}\right)^{-1}}{\frac{\sqrt{24}\sqrt{2}}{15}}
The opposite of -1 is 1.
\frac{2,94-\left(\frac{50}{27}\right)^{-1}}{\frac{\sqrt{24}\sqrt{2}}{15}}
Add 1,94 and 1 to get 2,94.
\frac{2,94-\frac{27}{50}}{\frac{\sqrt{24}\sqrt{2}}{15}}
Calculate \frac{50}{27} to the power of -1 and get \frac{27}{50}.
\frac{\frac{12}{5}}{\frac{\sqrt{24}\sqrt{2}}{15}}
Subtract \frac{27}{50} from 2,94 to get \frac{12}{5}.
\frac{\frac{12}{5}}{\frac{\sqrt{2}\sqrt{12}\sqrt{2}}{15}}
Factor 24=2\times 12. Rewrite the square root of the product \sqrt{2\times 12} as the product of square roots \sqrt{2}\sqrt{12}.
\frac{\frac{12}{5}}{\frac{2\sqrt{12}}{15}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\frac{12}{5}}{\frac{2\times 2\sqrt{3}}{15}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\frac{12}{5}}{\frac{4\sqrt{3}}{15}}
Multiply 2 and 2 to get 4.
\frac{12\times 15}{5\times 4\sqrt{3}}
Divide \frac{12}{5} by \frac{4\sqrt{3}}{15} by multiplying \frac{12}{5} by the reciprocal of \frac{4\sqrt{3}}{15}.
\frac{3\times 3}{\sqrt{3}}
Cancel out 4\times 5 in both numerator and denominator.
\frac{3\times 3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3\times 3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\times 3\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{9\sqrt{3}}{3}
Multiply 3 and 3 to get 9.
3\sqrt{3}
Divide 9\sqrt{3} by 3 to get 3\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}