\frac { 1,6 - 0,3 } { 2 } y + \frac { 4,4 + 1,5 } { 5 } y < - 4,05 y
Solve for y
y<0
Graph
Share
Copied to clipboard
5\left(1,6-0,3\right)y+2\left(4,4+1,5\right)y<-40,5y
Multiply both sides of the equation by 10, the least common multiple of 2;5. Since 10 is positive, the inequality direction remains the same.
5\times 1,3y+2\left(4,4+1,5\right)y<-40,5y
Subtract 0,3 from 1,6 to get 1,3.
6,5y+2\left(4,4+1,5\right)y<-40,5y
Multiply 5 and 1,3 to get 6,5.
6,5y+2\times 5,9y<-40,5y
Add 4,4 and 1,5 to get 5,9.
6,5y+11,8y<-40,5y
Multiply 2 and 5,9 to get 11,8.
18,3y<-40,5y
Combine 6,5y and 11,8y to get 18,3y.
18,3y+40,5y<0
Add 40,5y to both sides.
58,8y<0
Combine 18,3y and 40,5y to get 58,8y.
y<0
Product of two numbers is <0 if one is >0 and the other is <0. Since 58,8>0, y must be <0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}