\frac { 1,6 } { 8 } = \frac { x } { 6 + x }
Solve for x
x=1,5
Graph
Share
Copied to clipboard
\left(x+6\right)\times 1,6=8x
Variable x cannot be equal to -6 since division by zero is not defined. Multiply both sides of the equation by 8\left(x+6\right), the least common multiple of 8;6+x.
1,6x+9,6=8x
Use the distributive property to multiply x+6 by 1,6.
1,6x+9,6-8x=0
Subtract 8x from both sides.
-6,4x+9,6=0
Combine 1,6x and -8x to get -6,4x.
-6,4x=-9,6
Subtract 9,6 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-9,6}{-6,4}
Divide both sides by -6,4.
x=\frac{-96}{-64}
Expand \frac{-9,6}{-6,4} by multiplying both numerator and the denominator by 10.
x=\frac{3}{2}
Reduce the fraction \frac{-96}{-64} to lowest terms by extracting and canceling out -32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}