\frac { 1,3 \times 10 ^ { - 36 } } { 7,8 \times 10 ^ { - 5 } } =
Evaluate
\frac{1}{60000000000000000000000000000000}\approx 1,666666667 \cdot 10^{-32}
Factor
\frac{1}{3 \cdot 2 ^ {32} \cdot 5 ^ {31}} = 1.6666666666666665 \times 10^{-32}
Share
Copied to clipboard
\frac{1,3}{7,8\times 10^{31}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1,3}{7,8\times 10000000000000000000000000000000}
Calculate 10 to the power of 31 and get 10000000000000000000000000000000.
\frac{1,3}{78000000000000000000000000000000}
Multiply 7,8 and 10000000000000000000000000000000 to get 78000000000000000000000000000000.
\frac{13}{780000000000000000000000000000000}
Expand \frac{1,3}{78000000000000000000000000000000} by multiplying both numerator and the denominator by 10.
\frac{1}{60000000000000000000000000000000}
Reduce the fraction \frac{13}{780000000000000000000000000000000} to lowest terms by extracting and canceling out 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}