\frac { 1,3 ^ { - 10 } } { 1,38 \cdot 10 ^ { - 23 } \cdot 300 }
Evaluate
\frac{50000000000000000000000}{12223143}\approx 4,09060092 \cdot 10^{15}
Factor
\frac{2 ^ {22} \cdot 5 ^ {23}}{23 \cdot 3 ^ {12}} = 4090600919910697\frac{11368168}{12223143} = 4090600919910697
Share
Copied to clipboard
\frac{1\times \frac{1}{59049}}{1,38\times 10^{-23}\times 300}
Calculate 3 to the power of -10 and get \frac{1}{59049}.
\frac{\frac{1}{59049}}{1,38\times 10^{-23}\times 300}
Multiply 1 and \frac{1}{59049} to get \frac{1}{59049}.
\frac{\frac{1}{59049}}{1,38\times \frac{1}{100000000000000000000000}\times 300}
Calculate 10 to the power of -23 and get \frac{1}{100000000000000000000000}.
\frac{\frac{1}{59049}}{\frac{69}{5000000000000000000000000}\times 300}
Multiply 1,38 and \frac{1}{100000000000000000000000} to get \frac{69}{5000000000000000000000000}.
\frac{\frac{1}{59049}}{\frac{207}{50000000000000000000000}}
Multiply \frac{69}{5000000000000000000000000} and 300 to get \frac{207}{50000000000000000000000}.
\frac{1}{59049}\times \frac{50000000000000000000000}{207}
Divide \frac{1}{59049} by \frac{207}{50000000000000000000000} by multiplying \frac{1}{59049} by the reciprocal of \frac{207}{50000000000000000000000}.
\frac{50000000000000000000000}{12223143}
Multiply \frac{1}{59049} and \frac{50000000000000000000000}{207} to get \frac{50000000000000000000000}{12223143}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}