Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1.15-\left(1.25-\left(\frac{27}{20}-\frac{13}{5}\right)\right)+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Convert decimal number 1.35 to fraction \frac{135}{100}. Reduce the fraction \frac{135}{100} to lowest terms by extracting and canceling out 5.
\frac{1.15-\left(1.25-\left(\frac{27}{20}-\frac{52}{20}\right)\right)+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Least common multiple of 20 and 5 is 20. Convert \frac{27}{20} and \frac{13}{5} to fractions with denominator 20.
\frac{1.15-\left(1.25-\frac{27-52}{20}\right)+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Since \frac{27}{20} and \frac{52}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{1.15-\left(1.25-\frac{-25}{20}\right)+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Subtract 52 from 27 to get -25.
\frac{1.15-\left(1.25-\left(-\frac{5}{4}\right)\right)+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Reduce the fraction \frac{-25}{20} to lowest terms by extracting and canceling out 5.
\frac{1.15-\left(1.25+\frac{5}{4}\right)+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
The opposite of -\frac{5}{4} is \frac{5}{4}.
\frac{1.15-\left(\frac{5}{4}+\frac{5}{4}\right)+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Convert decimal number 1.25 to fraction \frac{125}{100}. Reduce the fraction \frac{125}{100} to lowest terms by extracting and canceling out 25.
\frac{1.15-\frac{5+5}{4}+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Since \frac{5}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{1.15-\frac{10}{4}+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Add 5 and 5 to get 10.
\frac{1.15-\frac{5}{2}+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{23}{20}-\frac{5}{2}+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Convert decimal number 1.15 to fraction \frac{115}{100}. Reduce the fraction \frac{115}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{23}{20}-\frac{50}{20}+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Least common multiple of 20 and 2 is 20. Convert \frac{23}{20} and \frac{5}{2} to fractions with denominator 20.
\frac{\frac{23-50}{20}+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Since \frac{23}{20} and \frac{50}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{27}{20}+\frac{3\times 5+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Subtract 50 from 23 to get -27.
\frac{-\frac{27}{20}+\frac{15+5}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Multiply 3 and 5 to get 15.
\frac{-\frac{27}{20}+\frac{20}{5}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Add 15 and 5 to get 20.
\frac{-\frac{27}{20}+4}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Divide 20 by 5 to get 4.
\frac{-\frac{27}{20}+\frac{80}{20}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Convert 4 to fraction \frac{80}{20}.
\frac{\frac{-27+80}{20}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Since -\frac{27}{20} and \frac{80}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{53}{20}}{5-\frac{4}{3}\left(\frac{2.6}{\frac{13}{6}}+0.2\right)}
Add -27 and 80 to get 53.
\frac{\frac{53}{20}}{5-\frac{4}{3}\left(2.6\times \frac{6}{13}+0.2\right)}
Divide 2.6 by \frac{13}{6} by multiplying 2.6 by the reciprocal of \frac{13}{6}.
\frac{\frac{53}{20}}{5-\frac{4}{3}\left(\frac{13}{5}\times \frac{6}{13}+0.2\right)}
Convert decimal number 2.6 to fraction \frac{26}{10}. Reduce the fraction \frac{26}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{53}{20}}{5-\frac{4}{3}\left(\frac{13\times 6}{5\times 13}+0.2\right)}
Multiply \frac{13}{5} times \frac{6}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{53}{20}}{5-\frac{4}{3}\left(\frac{6}{5}+0.2\right)}
Cancel out 13 in both numerator and denominator.
\frac{\frac{53}{20}}{5-\frac{4}{3}\left(\frac{6}{5}+\frac{1}{5}\right)}
Convert decimal number 0.2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{53}{20}}{5-\frac{4}{3}\times \frac{6+1}{5}}
Since \frac{6}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{53}{20}}{5-\frac{4}{3}\times \frac{7}{5}}
Add 6 and 1 to get 7.
\frac{\frac{53}{20}}{5-\frac{4\times 7}{3\times 5}}
Multiply \frac{4}{3} times \frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{53}{20}}{5-\frac{28}{15}}
Do the multiplications in the fraction \frac{4\times 7}{3\times 5}.
\frac{\frac{53}{20}}{\frac{75}{15}-\frac{28}{15}}
Convert 5 to fraction \frac{75}{15}.
\frac{\frac{53}{20}}{\frac{75-28}{15}}
Since \frac{75}{15} and \frac{28}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{53}{20}}{\frac{47}{15}}
Subtract 28 from 75 to get 47.
\frac{53}{20}\times \frac{15}{47}
Divide \frac{53}{20} by \frac{47}{15} by multiplying \frac{53}{20} by the reciprocal of \frac{47}{15}.
\frac{53\times 15}{20\times 47}
Multiply \frac{53}{20} times \frac{15}{47} by multiplying numerator times numerator and denominator times denominator.
\frac{795}{940}
Do the multiplications in the fraction \frac{53\times 15}{20\times 47}.
\frac{159}{188}
Reduce the fraction \frac{795}{940} to lowest terms by extracting and canceling out 5.