Solve for h
h=\frac{1-x_{0}}{11x}
x\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{1-x_{0}}{11h}\text{, }&x_{0}\neq 1\text{ and }h\neq 0\\x\neq 0\text{, }&h=0\text{ and }x_{0}=1\end{matrix}\right.
Graph
Share
Copied to clipboard
1-x_{0}=h\times 11x
Multiply both sides of the equation by x.
h\times 11x=1-x_{0}
Swap sides so that all variable terms are on the left hand side.
11xh=1-x_{0}
The equation is in standard form.
\frac{11xh}{11x}=\frac{1-x_{0}}{11x}
Divide both sides by 11x.
h=\frac{1-x_{0}}{11x}
Dividing by 11x undoes the multiplication by 11x.
1-x_{0}=h\times 11x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
h\times 11x=1-x_{0}
Swap sides so that all variable terms are on the left hand side.
11hx=1-x_{0}
The equation is in standard form.
\frac{11hx}{11h}=\frac{1-x_{0}}{11h}
Divide both sides by 11h.
x=\frac{1-x_{0}}{11h}
Dividing by 11h undoes the multiplication by 11h.
x=\frac{1-x_{0}}{11h}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}