Solve for x_0
x_{0}\neq 1
y=5\text{ and }y_{0}\neq 5
Solve for y
y=5
x_{0}\neq 1\text{ and }y_{0}\neq 5
Share
Copied to clipboard
\left(5-y_{0}\right)\left(1-x_{0}\right)=\left(1-x_{0}\right)\left(y-y_{0}\right)
Variable x_{0} cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(x_{0}-1\right)\left(y_{0}-5\right), the least common multiple of 1-x_{0},5-y_{0}.
5-5x_{0}-y_{0}+y_{0}x_{0}=\left(1-x_{0}\right)\left(y-y_{0}\right)
Use the distributive property to multiply 5-y_{0} by 1-x_{0}.
5-5x_{0}-y_{0}+y_{0}x_{0}=y-y_{0}-x_{0}y+y_{0}x_{0}
Use the distributive property to multiply 1-x_{0} by y-y_{0}.
5-5x_{0}-y_{0}+y_{0}x_{0}+x_{0}y=y-y_{0}+y_{0}x_{0}
Add x_{0}y to both sides.
5-5x_{0}-y_{0}+y_{0}x_{0}+x_{0}y-y_{0}x_{0}=y-y_{0}
Subtract y_{0}x_{0} from both sides.
5-5x_{0}-y_{0}+x_{0}y=y-y_{0}
Combine y_{0}x_{0} and -y_{0}x_{0} to get 0.
-5x_{0}-y_{0}+x_{0}y=y-y_{0}-5
Subtract 5 from both sides.
-5x_{0}+x_{0}y=y-y_{0}-5+y_{0}
Add y_{0} to both sides.
-5x_{0}+x_{0}y=y-5
Combine -y_{0} and y_{0} to get 0.
\left(-5+y\right)x_{0}=y-5
Combine all terms containing x_{0}.
\left(y-5\right)x_{0}=y-5
The equation is in standard form.
\frac{\left(y-5\right)x_{0}}{y-5}=\frac{y-5}{y-5}
Divide both sides by y-5.
x_{0}=\frac{y-5}{y-5}
Dividing by y-5 undoes the multiplication by y-5.
x_{0}=1
Divide y-5 by y-5.
x_{0}\in \emptyset
Variable x_{0} cannot be equal to 1.
\left(5-y_{0}\right)\left(1-x_{0}\right)=\left(1-x_{0}\right)\left(y-y_{0}\right)
Multiply both sides of the equation by \left(x_{0}-1\right)\left(y_{0}-5\right), the least common multiple of 1-x_{0},5-y_{0}.
5-5x_{0}-y_{0}+y_{0}x_{0}=\left(1-x_{0}\right)\left(y-y_{0}\right)
Use the distributive property to multiply 5-y_{0} by 1-x_{0}.
5-5x_{0}-y_{0}+y_{0}x_{0}=y-y_{0}-x_{0}y+y_{0}x_{0}
Use the distributive property to multiply 1-x_{0} by y-y_{0}.
y-y_{0}-x_{0}y+y_{0}x_{0}=5-5x_{0}-y_{0}+y_{0}x_{0}
Swap sides so that all variable terms are on the left hand side.
y-x_{0}y+y_{0}x_{0}=5-5x_{0}-y_{0}+y_{0}x_{0}+y_{0}
Add y_{0} to both sides.
y-x_{0}y+y_{0}x_{0}=5-5x_{0}+y_{0}x_{0}
Combine -y_{0} and y_{0} to get 0.
y-x_{0}y=5-5x_{0}+y_{0}x_{0}-y_{0}x_{0}
Subtract y_{0}x_{0} from both sides.
y-x_{0}y=5-5x_{0}
Combine y_{0}x_{0} and -y_{0}x_{0} to get 0.
\left(1-x_{0}\right)y=5-5x_{0}
Combine all terms containing y.
\frac{\left(1-x_{0}\right)y}{1-x_{0}}=\frac{5-5x_{0}}{1-x_{0}}
Divide both sides by 1-x_{0}.
y=\frac{5-5x_{0}}{1-x_{0}}
Dividing by 1-x_{0} undoes the multiplication by 1-x_{0}.
y=5
Divide 5-5x_{0} by 1-x_{0}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}