Solve for x
x=\frac{2-y^{2}}{y+2}
y\neq -2\text{ and }y\neq 0
Solve for y (complex solution)
\left\{\begin{matrix}\\y=\frac{-\sqrt{x^{2}-8x+8}-x}{2}\text{, }&\text{unconditionally}\\y=\frac{\sqrt{x^{2}-8x+8}-x}{2}\text{, }&x\neq 1\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{\sqrt{x^{2}-8x+8}-x}{2}\text{, }&x\geq 2\sqrt{2}+4\text{ or }\left(x\neq 1\text{ and }x\leq 4-2\sqrt{2}\right)\\y=\frac{-\sqrt{x^{2}-8x+8}-x}{2}\text{, }&x\geq 2\sqrt{2}+4\text{ or }x\leq 4-2\sqrt{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
2\left(1-x\right)=y\left(x+y\right)
Multiply both sides of the equation by 2y, the least common multiple of y,2.
2-2x=y\left(x+y\right)
Use the distributive property to multiply 2 by 1-x.
2-2x=yx+y^{2}
Use the distributive property to multiply y by x+y.
2-2x-yx=y^{2}
Subtract yx from both sides.
-2x-yx=y^{2}-2
Subtract 2 from both sides.
\left(-2-y\right)x=y^{2}-2
Combine all terms containing x.
\left(-y-2\right)x=y^{2}-2
The equation is in standard form.
\frac{\left(-y-2\right)x}{-y-2}=\frac{y^{2}-2}{-y-2}
Divide both sides by -y-2.
x=\frac{y^{2}-2}{-y-2}
Dividing by -y-2 undoes the multiplication by -y-2.
x=-\frac{y^{2}-2}{y+2}
Divide y^{2}-2 by -y-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}