Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+1\right)}-\frac{\left(x+9\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+1 and x-1 is \left(x-1\right)\left(x^{2}+1\right). Multiply \frac{1-x}{x^{2}+1} times \frac{x-1}{x-1}. Multiply \frac{x+9}{x-1} times \frac{x^{2}+1}{x^{2}+1}.
\frac{\left(1-x\right)\left(x-1\right)-\left(x+9\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x^{2}+1\right)}
Since \frac{\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+1\right)} and \frac{\left(x+9\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-1-x^{2}+x-x^{3}-x-9x^{2}-9}{\left(x-1\right)\left(x^{2}+1\right)}
Do the multiplications in \left(1-x\right)\left(x-1\right)-\left(x+9\right)\left(x^{2}+1\right).
\frac{x-10-10x^{2}-x^{3}}{\left(x-1\right)\left(x^{2}+1\right)}
Combine like terms in x-1-x^{2}+x-x^{3}-x-9x^{2}-9.
\frac{x-10-10x^{2}-x^{3}}{x^{3}-x^{2}+x-1}
Expand \left(x-1\right)\left(x^{2}+1\right).
\frac{\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+1\right)}-\frac{\left(x+9\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+1 and x-1 is \left(x-1\right)\left(x^{2}+1\right). Multiply \frac{1-x}{x^{2}+1} times \frac{x-1}{x-1}. Multiply \frac{x+9}{x-1} times \frac{x^{2}+1}{x^{2}+1}.
\frac{\left(1-x\right)\left(x-1\right)-\left(x+9\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x^{2}+1\right)}
Since \frac{\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+1\right)} and \frac{\left(x+9\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-1-x^{2}+x-x^{3}-x-9x^{2}-9}{\left(x-1\right)\left(x^{2}+1\right)}
Do the multiplications in \left(1-x\right)\left(x-1\right)-\left(x+9\right)\left(x^{2}+1\right).
\frac{x-10-10x^{2}-x^{3}}{\left(x-1\right)\left(x^{2}+1\right)}
Combine like terms in x-1-x^{2}+x-x^{3}-x-9x^{2}-9.
\frac{x-10-10x^{2}-x^{3}}{x^{3}-x^{2}+x-1}
Expand \left(x-1\right)\left(x^{2}+1\right).