Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1-x=\left(x+1\right)\times 3-2\sqrt{2}\left(x+1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
1-x=3x+3-2\sqrt{2}\left(x+1\right)
Use the distributive property to multiply x+1 by 3.
1-x=3x+3-2\sqrt{2}x-2\sqrt{2}
Use the distributive property to multiply -2\sqrt{2} by x+1.
1-x-3x=3-2\sqrt{2}x-2\sqrt{2}
Subtract 3x from both sides.
1-4x=3-2\sqrt{2}x-2\sqrt{2}
Combine -x and -3x to get -4x.
1-4x+2\sqrt{2}x=3-2\sqrt{2}
Add 2\sqrt{2}x to both sides.
-4x+2\sqrt{2}x=3-2\sqrt{2}-1
Subtract 1 from both sides.
-4x+2\sqrt{2}x=2-2\sqrt{2}
Subtract 1 from 3 to get 2.
\left(-4+2\sqrt{2}\right)x=2-2\sqrt{2}
Combine all terms containing x.
\left(2\sqrt{2}-4\right)x=2-2\sqrt{2}
The equation is in standard form.
\frac{\left(2\sqrt{2}-4\right)x}{2\sqrt{2}-4}=\frac{2-2\sqrt{2}}{2\sqrt{2}-4}
Divide both sides by -4+2\sqrt{2}.
x=\frac{2-2\sqrt{2}}{2\sqrt{2}-4}
Dividing by -4+2\sqrt{2} undoes the multiplication by -4+2\sqrt{2}.
x=\frac{\sqrt{2}}{2}
Divide 2-2\sqrt{2} by -4+2\sqrt{2}.