Evaluate
4
Factor
2^{2}
Graph
Share
Copied to clipboard
\frac{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)}{-x+1}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)}{x-x^{3}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Factor the expressions that are not already factored in \frac{1-x^{4}}{1-x}.
\frac{-\left(x+1\right)\left(-x+1\right)\left(-x^{2}-1\right)}{-x+1}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)}{x-x^{3}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Extract the negative sign in -1+x.
-\left(x+1\right)\left(-x^{2}-1\right)+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)}{x-x^{3}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Cancel out -x+1 in both numerator and denominator.
x^{3}+x^{2}+x+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)}{x-x^{3}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Expand the expression.
x^{3}+x^{2}+x+1+\frac{x\left(x+1\right)\left(x-1\right)^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Factor the expressions that are not already factored in \frac{\left(1-x^{4}\right)\left(x-x^{4}\right)}{x-x^{3}}.
x^{3}+x^{2}+x+1+\frac{-x\left(-x-1\right)\left(x-1\right)^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Extract the negative sign in 1+x.
x^{3}+x^{2}+x+1-\left(x-1\right)\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Cancel out x\left(x-1\right)\left(-x-1\right) in both numerator and denominator.
x^{3}+x^{2}+x+1-x^{5}-x^{3}+x^{2}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Expand the expression.
x^{2}+x+1-x^{5}+x^{2}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Combine x^{3} and -x^{3} to get 0.
2x^{2}+x+1-x^{5}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+x+2-x^{5}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Add 1 and 1 to get 2.
2x^{2}+x+2-x^{5}+\frac{x\left(-x-1\right)\left(x+1\right)x^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)\left(x-1\right)^{3}}{\left(x-1\right)\left(-x^{2}-x-1\right)x^{3}}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Factor the expressions that are not already factored in \frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)}{x^{3}-x^{6}}.
2x^{2}+x+2-x^{5}+\left(-x-1\right)\left(x+1\right)\left(x-1\right)^{2}\left(-x^{2}-1\right)+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Cancel out x\left(x-1\right)x^{2}\left(-x^{2}-x-1\right) in both numerator and denominator.
2x^{2}+x+2-x^{5}+x^{6}-x^{4}-x^{2}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Expand the expression.
x^{2}+x+2-x^{5}+x^{6}-x^{4}+1+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+x+3-x^{5}+x^{6}-x^{4}+\frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}
Add 2 and 1 to get 3.
x^{2}+x+3-x^{5}+x^{6}-x^{4}+\frac{x\left(-x-1\right)\left(x+1\right)\left(-x+1\right)x^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)x^{3}\left(x-1\right)^{3}}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)x^{6}}
Factor the expressions that are not already factored in \frac{\left(1-x^{4}\right)\left(x-x^{4}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right)}{x^{6}-x^{10}}.
x^{2}+x+3-x^{5}+x^{6}-x^{4}+\frac{-\left(-1\right)x\left(x-1\right)\left(x+1\right)\left(x+1\right)x^{2}\left(-x^{2}-1\right)\left(-x^{2}-x-1\right)x^{3}\left(x-1\right)^{3}}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)x^{6}}
Extract the negative sign in -1-x. Extract the negative sign in 1-x.
x^{2}+x+3-x^{5}+x^{6}-x^{4}-\left(-\left(x-1\right)\left(x+1\right)\left(x-1\right)^{2}\left(-x^{2}-x-1\right)\right)
Cancel out x\left(x-1\right)\left(x+1\right)x^{2}\left(-x^{2}-1\right)x^{3} in both numerator and denominator.
x^{2}+x+3-x^{5}+x^{6}-x^{4}-x^{6}+x^{5}+x^{4}-x^{2}-x+1
Expand the expression.
x^{2}+x+3-x^{5}-x^{4}+x^{5}+x^{4}-x^{2}-x+1
Combine x^{6} and -x^{6} to get 0.
x^{2}+x+3-x^{4}+x^{4}-x^{2}-x+1
Combine -x^{5} and x^{5} to get 0.
x^{2}+x+3-x^{2}-x+1
Combine -x^{4} and x^{4} to get 0.
x+3-x+1
Combine x^{2} and -x^{2} to get 0.
3+1
Combine x and -x to get 0.
4
Add 3 and 1 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}