Evaluate
\frac{x^{4}-x^{3}-6x^{2}+x-1}{\left(1-x\right)x^{2}}
Expand
\frac{x^{4}-x^{3}-6x^{2}+x-1}{\left(1-x\right)x^{2}}
Graph
Share
Copied to clipboard
\frac{\left(1-x^{2}\right)\left(-x+1\right)}{x\left(-x+1\right)}-\frac{6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 1-x is x\left(-x+1\right). Multiply \frac{1-x^{2}}{x} times \frac{-x+1}{-x+1}. Multiply \frac{6}{1-x} times \frac{x}{x}.
\frac{\left(1-x^{2}\right)\left(-x+1\right)-6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
Since \frac{\left(1-x^{2}\right)\left(-x+1\right)}{x\left(-x+1\right)} and \frac{6x}{x\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{1-x+x^{3}-x^{2}-6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
Do the multiplications in \left(1-x^{2}\right)\left(-x+1\right)-6x.
\frac{1-7x+x^{3}-x^{2}}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
Combine like terms in 1-x+x^{3}-x^{2}-6x.
\frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x}{\left(x-1\right)x^{2}}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(-x+1\right) and x^{2} is \left(x-1\right)x^{2}. Multiply \frac{1-7x+x^{3}-x^{2}}{x\left(-x+1\right)} times \frac{-x}{-x}. Multiply \frac{x+1}{x^{2}} times \frac{x-1}{x-1}.
\frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}}
Since \frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x}{\left(x-1\right)x^{2}} and \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+7x^{2}-x^{4}+x^{3}-x^{2}+x+1-x}{\left(x-1\right)x^{2}}
Do the multiplications in \left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x-\left(x+1\right)\left(x-1\right).
\frac{-x+6x^{2}-x^{4}+x^{3}+1}{\left(x-1\right)x^{2}}
Combine like terms in -x+7x^{2}-x^{4}+x^{3}-x^{2}+x+1-x.
\frac{-x+6x^{2}-x^{4}+x^{3}+1}{x^{3}-x^{2}}
Expand \left(x-1\right)x^{2}.
\frac{\left(1-x^{2}\right)\left(-x+1\right)}{x\left(-x+1\right)}-\frac{6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 1-x is x\left(-x+1\right). Multiply \frac{1-x^{2}}{x} times \frac{-x+1}{-x+1}. Multiply \frac{6}{1-x} times \frac{x}{x}.
\frac{\left(1-x^{2}\right)\left(-x+1\right)-6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
Since \frac{\left(1-x^{2}\right)\left(-x+1\right)}{x\left(-x+1\right)} and \frac{6x}{x\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{1-x+x^{3}-x^{2}-6x}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
Do the multiplications in \left(1-x^{2}\right)\left(-x+1\right)-6x.
\frac{1-7x+x^{3}-x^{2}}{x\left(-x+1\right)}-\frac{x+1}{x^{2}}
Combine like terms in 1-x+x^{3}-x^{2}-6x.
\frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x}{\left(x-1\right)x^{2}}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(-x+1\right) and x^{2} is \left(x-1\right)x^{2}. Multiply \frac{1-7x+x^{3}-x^{2}}{x\left(-x+1\right)} times \frac{-x}{-x}. Multiply \frac{x+1}{x^{2}} times \frac{x-1}{x-1}.
\frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}}
Since \frac{\left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x}{\left(x-1\right)x^{2}} and \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+7x^{2}-x^{4}+x^{3}-x^{2}+x+1-x}{\left(x-1\right)x^{2}}
Do the multiplications in \left(1-7x+x^{3}-x^{2}\right)\left(-1\right)x-\left(x+1\right)\left(x-1\right).
\frac{-x+6x^{2}-x^{4}+x^{3}+1}{\left(x-1\right)x^{2}}
Combine like terms in -x+7x^{2}-x^{4}+x^{3}-x^{2}+x+1-x.
\frac{-x+6x^{2}-x^{4}+x^{3}+1}{x^{3}-x^{2}}
Expand \left(x-1\right)x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}