Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}\times \frac{4i}{5}
Multiply both numerator and denominator of \frac{1-i}{3+i} by the complex conjugate of the denominator, 3-i.
\frac{2-4i}{10}\times \frac{4i}{5}
Do the multiplications in \frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
\left(\frac{1}{5}-\frac{2}{5}i\right)\times \frac{4i}{5}
Divide 2-4i by 10 to get \frac{1}{5}-\frac{2}{5}i.
\left(\frac{1}{5}-\frac{2}{5}i\right)\times \left(\frac{4}{5}i\right)
Divide 4i by 5 to get \frac{4}{5}i.
\frac{8}{25}+\frac{4}{25}i
Multiply \frac{1}{5}-\frac{2}{5}i and \frac{4}{5}i to get \frac{8}{25}+\frac{4}{25}i.
Re(\frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}\times \frac{4i}{5})
Multiply both numerator and denominator of \frac{1-i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{2-4i}{10}\times \frac{4i}{5})
Do the multiplications in \frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
Re(\left(\frac{1}{5}-\frac{2}{5}i\right)\times \frac{4i}{5})
Divide 2-4i by 10 to get \frac{1}{5}-\frac{2}{5}i.
Re(\left(\frac{1}{5}-\frac{2}{5}i\right)\times \left(\frac{4}{5}i\right))
Divide 4i by 5 to get \frac{4}{5}i.
Re(\frac{8}{25}+\frac{4}{25}i)
Multiply \frac{1}{5}-\frac{2}{5}i and \frac{4}{5}i to get \frac{8}{25}+\frac{4}{25}i.
\frac{8}{25}
The real part of \frac{8}{25}+\frac{4}{25}i is \frac{8}{25}.