Evaluate
\frac{8}{25}+\frac{4}{25}i=0.32+0.16i
Real Part
\frac{8}{25} = 0.32
Share
Copied to clipboard
\frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}\times \frac{4i}{5}
Multiply both numerator and denominator of \frac{1-i}{3+i} by the complex conjugate of the denominator, 3-i.
\frac{2-4i}{10}\times \frac{4i}{5}
Do the multiplications in \frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
\left(\frac{1}{5}-\frac{2}{5}i\right)\times \frac{4i}{5}
Divide 2-4i by 10 to get \frac{1}{5}-\frac{2}{5}i.
\left(\frac{1}{5}-\frac{2}{5}i\right)\times \left(\frac{4}{5}i\right)
Divide 4i by 5 to get \frac{4}{5}i.
\frac{8}{25}+\frac{4}{25}i
Multiply \frac{1}{5}-\frac{2}{5}i and \frac{4}{5}i to get \frac{8}{25}+\frac{4}{25}i.
Re(\frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}\times \frac{4i}{5})
Multiply both numerator and denominator of \frac{1-i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{2-4i}{10}\times \frac{4i}{5})
Do the multiplications in \frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
Re(\left(\frac{1}{5}-\frac{2}{5}i\right)\times \frac{4i}{5})
Divide 2-4i by 10 to get \frac{1}{5}-\frac{2}{5}i.
Re(\left(\frac{1}{5}-\frac{2}{5}i\right)\times \left(\frac{4}{5}i\right))
Divide 4i by 5 to get \frac{4}{5}i.
Re(\frac{8}{25}+\frac{4}{25}i)
Multiply \frac{1}{5}-\frac{2}{5}i and \frac{4}{5}i to get \frac{8}{25}+\frac{4}{25}i.
\frac{8}{25}
The real part of \frac{8}{25}+\frac{4}{25}i is \frac{8}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}