Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-i.
\frac{\left(1-i\right)\left(3-i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-i\right)\left(3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-i^{2}\right)}{10}
Multiply complex numbers 1-i and 3-i like you multiply binomials.
\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right)}{10}
By definition, i^{2} is -1.
\frac{3-i-3i-1}{10}
Do the multiplications in 1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right).
\frac{3-1+\left(-1-3\right)i}{10}
Combine the real and imaginary parts in 3-i-3i-1.
\frac{2-4i}{10}
Do the additions in 3-1+\left(-1-3\right)i.
\frac{1}{5}-\frac{2}{5}i
Divide 2-4i by 10 to get \frac{1}{5}-\frac{2}{5}i.
Re(\frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{1-i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{\left(1-i\right)\left(3-i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-i\right)\left(3-i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-i^{2}\right)}{10})
Multiply complex numbers 1-i and 3-i like you multiply binomials.
Re(\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right)}{10})
By definition, i^{2} is -1.
Re(\frac{3-i-3i-1}{10})
Do the multiplications in 1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right).
Re(\frac{3-1+\left(-1-3\right)i}{10})
Combine the real and imaginary parts in 3-i-3i-1.
Re(\frac{2-4i}{10})
Do the additions in 3-1+\left(-1-3\right)i.
Re(\frac{1}{5}-\frac{2}{5}i)
Divide 2-4i by 10 to get \frac{1}{5}-\frac{2}{5}i.
\frac{1}{5}
The real part of \frac{1}{5}-\frac{2}{5}i is \frac{1}{5}.