Evaluate
-\frac{1}{2}i=-0.5i
Real Part
0
Share
Copied to clipboard
\frac{1-i}{1-\left(-1\right)}+\frac{1}{1-i}+\frac{1-2i}{2i}
Calculate i to the power of 2 and get -1.
\frac{1-i}{1+1}+\frac{1}{1-i}+\frac{1-2i}{2i}
The opposite of -1 is 1.
\frac{1-i}{2}+\frac{1}{1-i}+\frac{1-2i}{2i}
Add 1 and 1 to get 2.
\frac{1}{2}-\frac{1}{2}i+\frac{1}{1-i}+\frac{1-2i}{2i}
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}-\frac{1}{2}i+\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{1-2i}{2i}
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{1}{2}-\frac{1}{2}i+\frac{1+i}{2}+\frac{1-2i}{2i}
Do the multiplications in \frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\frac{1}{2}-\frac{1}{2}i+\left(\frac{1}{2}+\frac{1}{2}i\right)+\frac{1-2i}{2i}
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
\frac{1-2i}{2i}+1
Do the additions.
\frac{2+i}{-2}+1
Multiply both numerator and denominator of \frac{1-2i}{2i} by imaginary unit i.
-1-\frac{1}{2}i+1
Divide 2+i by -2 to get -1-\frac{1}{2}i.
-\frac{1}{2}i
Add -1-\frac{1}{2}i and 1 to get -\frac{1}{2}i.
Re(\frac{1-i}{1-\left(-1\right)}+\frac{1}{1-i}+\frac{1-2i}{2i})
Calculate i to the power of 2 and get -1.
Re(\frac{1-i}{1+1}+\frac{1}{1-i}+\frac{1-2i}{2i})
The opposite of -1 is 1.
Re(\frac{1-i}{2}+\frac{1}{1-i}+\frac{1-2i}{2i})
Add 1 and 1 to get 2.
Re(\frac{1}{2}-\frac{1}{2}i+\frac{1}{1-i}+\frac{1-2i}{2i})
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
Re(\frac{1}{2}-\frac{1}{2}i+\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{1-2i}{2i})
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{1}{2}-\frac{1}{2}i+\frac{1+i}{2}+\frac{1-2i}{2i})
Do the multiplications in \frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(\frac{1}{2}-\frac{1}{2}i+\left(\frac{1}{2}+\frac{1}{2}i\right)+\frac{1-2i}{2i})
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
Re(\frac{1-2i}{2i}+1)
Do the additions in \frac{1}{2}-\frac{1}{2}i+\left(\frac{1}{2}+\frac{1}{2}i\right).
Re(\frac{2+i}{-2}+1)
Multiply both numerator and denominator of \frac{1-2i}{2i} by imaginary unit i.
Re(-1-\frac{1}{2}i+1)
Divide 2+i by -2 to get -1-\frac{1}{2}i.
Re(-\frac{1}{2}i)
Add -1-\frac{1}{2}i and 1 to get -\frac{1}{2}i.
0
The real part of -\frac{1}{2}i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}