Evaluate
\frac{9}{10}-\frac{3}{10}i=0.9-0.3i
Real Part
\frac{9}{10} = 0.9
Share
Copied to clipboard
\frac{\left(1-i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}+\frac{2-i}{3+i}
Multiply both numerator and denominator of \frac{1-i}{1-3i} by the complex conjugate of the denominator, 1+3i.
\frac{4+2i}{10}+\frac{2-i}{3+i}
Do the multiplications in \frac{\left(1-i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
\frac{2}{5}+\frac{1}{5}i+\frac{2-i}{3+i}
Divide 4+2i by 10 to get \frac{2}{5}+\frac{1}{5}i.
\frac{2}{5}+\frac{1}{5}i+\frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator of \frac{2-i}{3+i} by the complex conjugate of the denominator, 3-i.
\frac{2}{5}+\frac{1}{5}i+\frac{5-5i}{10}
Do the multiplications in \frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
\frac{2}{5}+\frac{1}{5}i+\left(\frac{1}{2}-\frac{1}{2}i\right)
Divide 5-5i by 10 to get \frac{1}{2}-\frac{1}{2}i.
\frac{9}{10}-\frac{3}{10}i
Add \frac{2}{5}+\frac{1}{5}i and \frac{1}{2}-\frac{1}{2}i to get \frac{9}{10}-\frac{3}{10}i.
Re(\frac{\left(1-i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}+\frac{2-i}{3+i})
Multiply both numerator and denominator of \frac{1-i}{1-3i} by the complex conjugate of the denominator, 1+3i.
Re(\frac{4+2i}{10}+\frac{2-i}{3+i})
Do the multiplications in \frac{\left(1-i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{2-i}{3+i})
Divide 4+2i by 10 to get \frac{2}{5}+\frac{1}{5}i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{2-i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{5-5i}{10})
Do the multiplications in \frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
Re(\frac{2}{5}+\frac{1}{5}i+\left(\frac{1}{2}-\frac{1}{2}i\right))
Divide 5-5i by 10 to get \frac{1}{2}-\frac{1}{2}i.
Re(\frac{9}{10}-\frac{3}{10}i)
Add \frac{2}{5}+\frac{1}{5}i and \frac{1}{2}-\frac{1}{2}i to get \frac{9}{10}-\frac{3}{10}i.
\frac{9}{10}
The real part of \frac{9}{10}-\frac{3}{10}i is \frac{9}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}