Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}+\frac{2-i}{3+i}
Multiply both numerator and denominator of \frac{1-i}{1-3i} by the complex conjugate of the denominator, 1+3i.
\frac{4+2i}{10}+\frac{2-i}{3+i}
Do the multiplications in \frac{\left(1-i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
\frac{2}{5}+\frac{1}{5}i+\frac{2-i}{3+i}
Divide 4+2i by 10 to get \frac{2}{5}+\frac{1}{5}i.
\frac{2}{5}+\frac{1}{5}i+\frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator of \frac{2-i}{3+i} by the complex conjugate of the denominator, 3-i.
\frac{2}{5}+\frac{1}{5}i+\frac{5-5i}{10}
Do the multiplications in \frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
\frac{2}{5}+\frac{1}{5}i+\left(\frac{1}{2}-\frac{1}{2}i\right)
Divide 5-5i by 10 to get \frac{1}{2}-\frac{1}{2}i.
\frac{9}{10}-\frac{3}{10}i
Add \frac{2}{5}+\frac{1}{5}i and \frac{1}{2}-\frac{1}{2}i to get \frac{9}{10}-\frac{3}{10}i.
Re(\frac{\left(1-i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}+\frac{2-i}{3+i})
Multiply both numerator and denominator of \frac{1-i}{1-3i} by the complex conjugate of the denominator, 1+3i.
Re(\frac{4+2i}{10}+\frac{2-i}{3+i})
Do the multiplications in \frac{\left(1-i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{2-i}{3+i})
Divide 4+2i by 10 to get \frac{2}{5}+\frac{1}{5}i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{2-i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{5-5i}{10})
Do the multiplications in \frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
Re(\frac{2}{5}+\frac{1}{5}i+\left(\frac{1}{2}-\frac{1}{2}i\right))
Divide 5-5i by 10 to get \frac{1}{2}-\frac{1}{2}i.
Re(\frac{9}{10}-\frac{3}{10}i)
Add \frac{2}{5}+\frac{1}{5}i and \frac{1}{2}-\frac{1}{2}i to get \frac{9}{10}-\frac{3}{10}i.
\frac{9}{10}
The real part of \frac{9}{10}-\frac{3}{10}i is \frac{9}{10}.