Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(1-i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 1+1\left(-i\right)-i-\left(-i^{2}\right)}{2}
Multiply complex numbers 1-i and 1-i like you multiply binomials.
\frac{1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}
By definition, i^{2} is -1.
\frac{1-i-i-1}{2}
Do the multiplications in 1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right).
\frac{1-1+\left(-1-1\right)i}{2}
Combine the real and imaginary parts in 1-i-i-1.
\frac{-2i}{2}
Do the additions in 1-1+\left(-1-1\right)i.
-i
Divide -2i by 2 to get -i.
Re(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(1-i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 1+1\left(-i\right)-i-\left(-i^{2}\right)}{2})
Multiply complex numbers 1-i and 1-i like you multiply binomials.
Re(\frac{1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right)}{2})
By definition, i^{2} is -1.
Re(\frac{1-i-i-1}{2})
Do the multiplications in 1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right).
Re(\frac{1-1+\left(-1-1\right)i}{2})
Combine the real and imaginary parts in 1-i-i-1.
Re(\frac{-2i}{2})
Do the additions in 1-1+\left(-1-1\right)i.
Re(-i)
Divide -2i by 2 to get -i.
0
The real part of -i is 0.