Evaluate
2i
Real Part
0
Share
Copied to clipboard
\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+3i
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{\left(1-i\right)\left(1-i\right)}{1^{2}-i^{2}}+3i
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-i\right)\left(1-i\right)}{2}+3i
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 1+1\left(-i\right)-i-\left(-i^{2}\right)}{2}+3i
Multiply complex numbers 1-i and 1-i like you multiply binomials.
\frac{1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}+3i
By definition, i^{2} is -1.
\frac{1-i-i-1}{2}+3i
Do the multiplications in 1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right).
\frac{1-1+\left(-1-1\right)i}{2}+3i
Combine the real and imaginary parts in 1-i-i-1.
\frac{-2i}{2}+3i
Do the additions in 1-1+\left(-1-1\right)i.
-i+3i
Divide -2i by 2 to get -i.
2i
Add -i and 3i to get 2i.
Re(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+3i)
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(1-i\right)\left(1-i\right)}{1^{2}-i^{2}}+3i)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-i\right)\left(1-i\right)}{2}+3i)
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 1+1\left(-i\right)-i-\left(-i^{2}\right)}{2}+3i)
Multiply complex numbers 1-i and 1-i like you multiply binomials.
Re(\frac{1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}+3i)
By definition, i^{2} is -1.
Re(\frac{1-i-i-1}{2}+3i)
Do the multiplications in 1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right).
Re(\frac{1-1+\left(-1-1\right)i}{2}+3i)
Combine the real and imaginary parts in 1-i-i-1.
Re(\frac{-2i}{2}+3i)
Do the additions in 1-1+\left(-1-1\right)i.
Re(-i+3i)
Divide -2i by 2 to get -i.
Re(2i)
Add -i and 3i to get 2i.
0
The real part of 2i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}