Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-i\right)\left(\sqrt{2}+i\right)}{\left(\sqrt{2}-i\right)\left(\sqrt{2}+i\right)}
Rationalize the denominator of \frac{1-i}{\sqrt{2}-i} by multiplying numerator and denominator by \sqrt{2}+i.
\frac{\left(1-i\right)\left(\sqrt{2}+i\right)}{\left(\sqrt{2}\right)^{2}-\left(-i\right)^{2}}
Consider \left(\sqrt{2}-i\right)\left(\sqrt{2}+i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-i\right)\left(\sqrt{2}+i\right)}{2+1}
Square \sqrt{2}. Square -i.
\frac{\left(1-i\right)\left(\sqrt{2}+i\right)}{3}
Subtract -1 from 2 to get 3.
\left(\frac{1}{3}-\frac{1}{3}i\right)\left(\sqrt{2}+i\right)
Divide \left(1-i\right)\left(\sqrt{2}+i\right) by 3 to get \left(\frac{1}{3}-\frac{1}{3}i\right)\left(\sqrt{2}+i\right).
\left(\frac{1}{3}-\frac{1}{3}i\right)\sqrt{2}+\left(\frac{1}{3}+\frac{1}{3}i\right)
Use the distributive property to multiply \frac{1}{3}-\frac{1}{3}i by \sqrt{2}+i.