Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a-1\right)\left(-a^{2}-a-1\right)}{\left(a-1\right)^{2}}-\frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}+\frac{a^{2}}{a-1}
Factor the expressions that are not already factored in \frac{1-a^{3}}{a^{2}-2a+1}.
\frac{-a^{2}-a-1}{a-1}-\frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}+\frac{a^{2}}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{-a^{2}-a-1}{a-1}-\frac{\left(a-1\right)\left(a+1\right)}{\left(a-1\right)^{3}}+\frac{a^{2}}{a-1}
Factor the expressions that are not already factored in \frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}.
\frac{-a^{2}-a-1}{a-1}-\frac{a+1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{\left(-a^{2}-a-1\right)\left(a-1\right)}{\left(a-1\right)^{2}}-\frac{a+1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-1\right)^{2} is \left(a-1\right)^{2}. Multiply \frac{-a^{2}-a-1}{a-1} times \frac{a-1}{a-1}.
\frac{\left(-a^{2}-a-1\right)\left(a-1\right)-\left(a+1\right)}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Since \frac{\left(-a^{2}-a-1\right)\left(a-1\right)}{\left(a-1\right)^{2}} and \frac{a+1}{\left(a-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a^{3}+a^{2}-a^{2}+a-a+1-a-1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Do the multiplications in \left(-a^{2}-a-1\right)\left(a-1\right)-\left(a+1\right).
\frac{-a^{3}-a}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Combine like terms in -a^{3}+a^{2}-a^{2}+a-a+1-a-1.
\frac{-a^{3}-a}{\left(a-1\right)^{2}}+\frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)^{2} and a-1 is \left(a-1\right)^{2}. Multiply \frac{a^{2}}{a-1} times \frac{a-1}{a-1}.
\frac{-a^{3}-a+a^{2}\left(a-1\right)}{\left(a-1\right)^{2}}
Since \frac{-a^{3}-a}{\left(a-1\right)^{2}} and \frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-a^{3}-a+a^{3}-a^{2}}{\left(a-1\right)^{2}}
Do the multiplications in -a^{3}-a+a^{2}\left(a-1\right).
\frac{-a-a^{2}}{\left(a-1\right)^{2}}
Combine like terms in -a^{3}-a+a^{3}-a^{2}.
\frac{-a-a^{2}}{a^{2}-2a+1}
Expand \left(a-1\right)^{2}.
\frac{\left(a-1\right)\left(-a^{2}-a-1\right)}{\left(a-1\right)^{2}}-\frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}+\frac{a^{2}}{a-1}
Factor the expressions that are not already factored in \frac{1-a^{3}}{a^{2}-2a+1}.
\frac{-a^{2}-a-1}{a-1}-\frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}+\frac{a^{2}}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{-a^{2}-a-1}{a-1}-\frac{\left(a-1\right)\left(a+1\right)}{\left(a-1\right)^{3}}+\frac{a^{2}}{a-1}
Factor the expressions that are not already factored in \frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}.
\frac{-a^{2}-a-1}{a-1}-\frac{a+1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{\left(-a^{2}-a-1\right)\left(a-1\right)}{\left(a-1\right)^{2}}-\frac{a+1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-1\right)^{2} is \left(a-1\right)^{2}. Multiply \frac{-a^{2}-a-1}{a-1} times \frac{a-1}{a-1}.
\frac{\left(-a^{2}-a-1\right)\left(a-1\right)-\left(a+1\right)}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Since \frac{\left(-a^{2}-a-1\right)\left(a-1\right)}{\left(a-1\right)^{2}} and \frac{a+1}{\left(a-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a^{3}+a^{2}-a^{2}+a-a+1-a-1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Do the multiplications in \left(-a^{2}-a-1\right)\left(a-1\right)-\left(a+1\right).
\frac{-a^{3}-a}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Combine like terms in -a^{3}+a^{2}-a^{2}+a-a+1-a-1.
\frac{-a^{3}-a}{\left(a-1\right)^{2}}+\frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)^{2} and a-1 is \left(a-1\right)^{2}. Multiply \frac{a^{2}}{a-1} times \frac{a-1}{a-1}.
\frac{-a^{3}-a+a^{2}\left(a-1\right)}{\left(a-1\right)^{2}}
Since \frac{-a^{3}-a}{\left(a-1\right)^{2}} and \frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-a^{3}-a+a^{3}-a^{2}}{\left(a-1\right)^{2}}
Do the multiplications in -a^{3}-a+a^{2}\left(a-1\right).
\frac{-a-a^{2}}{\left(a-1\right)^{2}}
Combine like terms in -a^{3}-a+a^{3}-a^{2}.
\frac{-a-a^{2}}{a^{2}-2a+1}
Expand \left(a-1\right)^{2}.