Evaluate
-\frac{a\left(a+1\right)}{\left(a-1\right)^{2}}
Expand
-\frac{a^{2}+a}{\left(a-1\right)^{2}}
Share
Copied to clipboard
\frac{\left(a-1\right)\left(-a^{2}-a-1\right)}{\left(a-1\right)^{2}}-\frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}+\frac{a^{2}}{a-1}
Factor the expressions that are not already factored in \frac{1-a^{3}}{a^{2}-2a+1}.
\frac{-a^{2}-a-1}{a-1}-\frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}+\frac{a^{2}}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{-a^{2}-a-1}{a-1}-\frac{\left(a-1\right)\left(a+1\right)}{\left(a-1\right)^{3}}+\frac{a^{2}}{a-1}
Factor the expressions that are not already factored in \frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}.
\frac{-a^{2}-a-1}{a-1}-\frac{a+1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{\left(-a^{2}-a-1\right)\left(a-1\right)}{\left(a-1\right)^{2}}-\frac{a+1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-1\right)^{2} is \left(a-1\right)^{2}. Multiply \frac{-a^{2}-a-1}{a-1} times \frac{a-1}{a-1}.
\frac{\left(-a^{2}-a-1\right)\left(a-1\right)-\left(a+1\right)}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Since \frac{\left(-a^{2}-a-1\right)\left(a-1\right)}{\left(a-1\right)^{2}} and \frac{a+1}{\left(a-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a^{3}+a^{2}-a^{2}+a-a+1-a-1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Do the multiplications in \left(-a^{2}-a-1\right)\left(a-1\right)-\left(a+1\right).
\frac{-a^{3}-a}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Combine like terms in -a^{3}+a^{2}-a^{2}+a-a+1-a-1.
\frac{-a^{3}-a}{\left(a-1\right)^{2}}+\frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)^{2} and a-1 is \left(a-1\right)^{2}. Multiply \frac{a^{2}}{a-1} times \frac{a-1}{a-1}.
\frac{-a^{3}-a+a^{2}\left(a-1\right)}{\left(a-1\right)^{2}}
Since \frac{-a^{3}-a}{\left(a-1\right)^{2}} and \frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-a^{3}-a+a^{3}-a^{2}}{\left(a-1\right)^{2}}
Do the multiplications in -a^{3}-a+a^{2}\left(a-1\right).
\frac{-a-a^{2}}{\left(a-1\right)^{2}}
Combine like terms in -a^{3}-a+a^{3}-a^{2}.
\frac{-a-a^{2}}{a^{2}-2a+1}
Expand \left(a-1\right)^{2}.
\frac{\left(a-1\right)\left(-a^{2}-a-1\right)}{\left(a-1\right)^{2}}-\frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}+\frac{a^{2}}{a-1}
Factor the expressions that are not already factored in \frac{1-a^{3}}{a^{2}-2a+1}.
\frac{-a^{2}-a-1}{a-1}-\frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}+\frac{a^{2}}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{-a^{2}-a-1}{a-1}-\frac{\left(a-1\right)\left(a+1\right)}{\left(a-1\right)^{3}}+\frac{a^{2}}{a-1}
Factor the expressions that are not already factored in \frac{a^{2}-1}{a^{3}-3a^{2}+3a-1}.
\frac{-a^{2}-a-1}{a-1}-\frac{a+1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{\left(-a^{2}-a-1\right)\left(a-1\right)}{\left(a-1\right)^{2}}-\frac{a+1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-1\right)^{2} is \left(a-1\right)^{2}. Multiply \frac{-a^{2}-a-1}{a-1} times \frac{a-1}{a-1}.
\frac{\left(-a^{2}-a-1\right)\left(a-1\right)-\left(a+1\right)}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Since \frac{\left(-a^{2}-a-1\right)\left(a-1\right)}{\left(a-1\right)^{2}} and \frac{a+1}{\left(a-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a^{3}+a^{2}-a^{2}+a-a+1-a-1}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Do the multiplications in \left(-a^{2}-a-1\right)\left(a-1\right)-\left(a+1\right).
\frac{-a^{3}-a}{\left(a-1\right)^{2}}+\frac{a^{2}}{a-1}
Combine like terms in -a^{3}+a^{2}-a^{2}+a-a+1-a-1.
\frac{-a^{3}-a}{\left(a-1\right)^{2}}+\frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)^{2} and a-1 is \left(a-1\right)^{2}. Multiply \frac{a^{2}}{a-1} times \frac{a-1}{a-1}.
\frac{-a^{3}-a+a^{2}\left(a-1\right)}{\left(a-1\right)^{2}}
Since \frac{-a^{3}-a}{\left(a-1\right)^{2}} and \frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-a^{3}-a+a^{3}-a^{2}}{\left(a-1\right)^{2}}
Do the multiplications in -a^{3}-a+a^{2}\left(a-1\right).
\frac{-a-a^{2}}{\left(a-1\right)^{2}}
Combine like terms in -a^{3}-a+a^{3}-a^{2}.
\frac{-a-a^{2}}{a^{2}-2a+1}
Expand \left(a-1\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}