Solve for a
a=\frac{1}{14}\approx 0.071428571
Share
Copied to clipboard
1-a^{2}+aa+a\left(-3\right)=11a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
1-a^{2}+a^{2}+a\left(-3\right)=11a
Multiply a and a to get a^{2}.
1+a\left(-3\right)=11a
Combine -a^{2} and a^{2} to get 0.
1+a\left(-3\right)-11a=0
Subtract 11a from both sides.
1-14a=0
Combine a\left(-3\right) and -11a to get -14a.
-14a=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
a=\frac{-1}{-14}
Divide both sides by -14.
a=\frac{1}{14}
Fraction \frac{-1}{-14} can be simplified to \frac{1}{14} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}