Solve for D
D=\frac{604}{605}\approx 0.998347107
Share
Copied to clipboard
\frac{1-D}{D}=\frac{1}{604}
Divide both sides by 604.
604\left(1-D\right)=D
Variable D cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 604D, the least common multiple of D,604.
604-604D=D
Use the distributive property to multiply 604 by 1-D.
604-604D-D=0
Subtract D from both sides.
604-605D=0
Combine -604D and -D to get -605D.
-605D=-604
Subtract 604 from both sides. Anything subtracted from zero gives its negation.
D=\frac{-604}{-605}
Divide both sides by -605.
D=\frac{604}{605}
Fraction \frac{-604}{-605} can be simplified to \frac{604}{605} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}