Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-6m}{\left(m-1\right)\left(-m^{2}-m-1\right)}-\frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Factor 1-m^{3}. Factor m^{3}-1.
\frac{-\left(1-6m\right)}{\left(m-1\right)\left(m^{2}+m+1\right)}-\frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(-m^{2}-m-1\right) and \left(m-1\right)\left(m^{2}+m+1\right) is \left(m-1\right)\left(m^{2}+m+1\right). Multiply \frac{1-6m}{\left(m-1\right)\left(-m^{2}-m-1\right)} times \frac{-1}{-1}.
\frac{-\left(1-6m\right)-5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Since \frac{-\left(1-6m\right)}{\left(m-1\right)\left(m^{2}+m+1\right)} and \frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-1+6m-5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Do the multiplications in -\left(1-6m\right)-5.
\frac{-6+6m}{\left(m-1\right)\left(m^{2}+m+1\right)}
Combine like terms in -1+6m-5.
\frac{6\left(m-1\right)}{\left(m-1\right)\left(m^{2}+m+1\right)}
Factor the expressions that are not already factored in \frac{-6+6m}{\left(m-1\right)\left(m^{2}+m+1\right)}.
\frac{6}{m^{2}+m+1}
Cancel out m-1 in both numerator and denominator.
\frac{1-6m}{\left(m-1\right)\left(-m^{2}-m-1\right)}-\frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Factor 1-m^{3}. Factor m^{3}-1.
\frac{-\left(1-6m\right)}{\left(m-1\right)\left(m^{2}+m+1\right)}-\frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(-m^{2}-m-1\right) and \left(m-1\right)\left(m^{2}+m+1\right) is \left(m-1\right)\left(m^{2}+m+1\right). Multiply \frac{1-6m}{\left(m-1\right)\left(-m^{2}-m-1\right)} times \frac{-1}{-1}.
\frac{-\left(1-6m\right)-5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Since \frac{-\left(1-6m\right)}{\left(m-1\right)\left(m^{2}+m+1\right)} and \frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-1+6m-5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Do the multiplications in -\left(1-6m\right)-5.
\frac{-6+6m}{\left(m-1\right)\left(m^{2}+m+1\right)}
Combine like terms in -1+6m-5.
\frac{6\left(m-1\right)}{\left(m-1\right)\left(m^{2}+m+1\right)}
Factor the expressions that are not already factored in \frac{-6+6m}{\left(m-1\right)\left(m^{2}+m+1\right)}.
\frac{6}{m^{2}+m+1}
Cancel out m-1 in both numerator and denominator.