Evaluate
\frac{6}{m^{2}+m+1}
Expand
\frac{6}{m^{2}+m+1}
Quiz
Polynomial
5 problems similar to:
\frac { 1 - 6 m } { 1 - m ^ { 3 } } - \frac { 5 } { m ^ { 3 } - 1 }
Share
Copied to clipboard
\frac{1-6m}{\left(m-1\right)\left(-m^{2}-m-1\right)}-\frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Factor 1-m^{3}. Factor m^{3}-1.
\frac{-\left(1-6m\right)}{\left(m-1\right)\left(m^{2}+m+1\right)}-\frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(-m^{2}-m-1\right) and \left(m-1\right)\left(m^{2}+m+1\right) is \left(m-1\right)\left(m^{2}+m+1\right). Multiply \frac{1-6m}{\left(m-1\right)\left(-m^{2}-m-1\right)} times \frac{-1}{-1}.
\frac{-\left(1-6m\right)-5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Since \frac{-\left(1-6m\right)}{\left(m-1\right)\left(m^{2}+m+1\right)} and \frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-1+6m-5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Do the multiplications in -\left(1-6m\right)-5.
\frac{-6+6m}{\left(m-1\right)\left(m^{2}+m+1\right)}
Combine like terms in -1+6m-5.
\frac{6\left(m-1\right)}{\left(m-1\right)\left(m^{2}+m+1\right)}
Factor the expressions that are not already factored in \frac{-6+6m}{\left(m-1\right)\left(m^{2}+m+1\right)}.
\frac{6}{m^{2}+m+1}
Cancel out m-1 in both numerator and denominator.
\frac{1-6m}{\left(m-1\right)\left(-m^{2}-m-1\right)}-\frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Factor 1-m^{3}. Factor m^{3}-1.
\frac{-\left(1-6m\right)}{\left(m-1\right)\left(m^{2}+m+1\right)}-\frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(-m^{2}-m-1\right) and \left(m-1\right)\left(m^{2}+m+1\right) is \left(m-1\right)\left(m^{2}+m+1\right). Multiply \frac{1-6m}{\left(m-1\right)\left(-m^{2}-m-1\right)} times \frac{-1}{-1}.
\frac{-\left(1-6m\right)-5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Since \frac{-\left(1-6m\right)}{\left(m-1\right)\left(m^{2}+m+1\right)} and \frac{5}{\left(m-1\right)\left(m^{2}+m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-1+6m-5}{\left(m-1\right)\left(m^{2}+m+1\right)}
Do the multiplications in -\left(1-6m\right)-5.
\frac{-6+6m}{\left(m-1\right)\left(m^{2}+m+1\right)}
Combine like terms in -1+6m-5.
\frac{6\left(m-1\right)}{\left(m-1\right)\left(m^{2}+m+1\right)}
Factor the expressions that are not already factored in \frac{-6+6m}{\left(m-1\right)\left(m^{2}+m+1\right)}.
\frac{6}{m^{2}+m+1}
Cancel out m-1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}